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1. INTRODUCTION

Rapid development of computer technology together with the
growing availability of giga-scale data sources brings new
possibilities to geo-spatial analysis [1, 2]. We define giga-
scale datasets as those having size exceeding 109 cells, re-
gardless of their physical scale. They may represent local
regions at ultra-high resolution (of the order of centimeters)
offered by LiDAR technology or global mosaics of satellite
imagery or digital elevation models (DEMs) at medium reso-
lution (of the order of 10-100 meters). Frequently, these giga-
scale datasets are categorical rasters - products derived from
processing of original data. Examples include land cover/land
use (LCLU), landforms, vegetation, and urban maps. In such
rasters important information is stored not only at the level
of individual cells, but also, and maybe predominantly, at the
level of patterns of the categories [3, 4]. Urban structures,
plant habitats, geomorphological surfaces, and landscapes are
examples of such patterns; they have collective functions and
meaning and thus contain valuable information that cannot be
inferred at the level of cell-based analysis.

Analyzing patterns, especially patterns in giga-scale
datasets is not feasible by means of visual inspection but
it is feasible by means of parsing the data by “intelligent”
algorithms. In this paper we present a GeoPAT (Geospa-
tial Pattern Analysis Toolbox) – a conceptual framework for
retrieval of such pattern-based information and an imple-
mentation of this framework in a ready-to-use software. The
framework is applicable to all categorical datasets and its use
is illustrated using a raster containing categories of landform
elements derived from a DEM.
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grant DEC-2012/07/B/ST6/01206
†This work was founded by NSF GRANT BCS-1147702.

Fig. 1. Different data processing pipelines using GeoPAT
toolbox. Input contains GRASS raster layers and output con-
tains raster layers or text tables

2. THE CONCEPT

In our approach a basic areal unit of analysis is referred to as a
“scene.” We define a scene as a part of the dataset (Fig. 1) con-
tained in a local region (square circle or irregular) of a given
size. Thus scene is a local pattern of categories represented
in a dataset. Scene size should be small in comparison to the
extent of the entire dataset but it should contain a large num-
ber of individual raster cells to represent a meaningful pattern.
The lattice of all scenes covers the same spatial extent as the
original raster but the number of areal units (scenes) in such
lattice is much smaller than the number of areal units (cells)
in the original raster. Scene signature is defined as a nominal
histogram of pattern features; different pattern features maybe
selected for scene signature depending on the character of the
data. Similarity between two patterns is calculated as a sim-
ilarity between their signatures; different similarity measures
may be selected for signatures built using different features.

Scene signatures and similarity measures are the two ba-
sic blocks of our framework. From these blocks we have
designed and implemented software tools to address the four
most frequent investigative needs: 1) clustering: similarity
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analysis between separate scenes; 2) searching: looking for
particular scenes in entire spatial dataset; 3) comparing: spa-
tial analysis of differences between co-registered datasets;
4) segmentation: segmenting the entire dataset into mutually
exclusive and exhaustive regions, each grouping patterns that
although unique in their details, are similar on a broader level.

The goal of clustering is to look for regularity (or lack of
it) in the scenes constituting a given region or any other set
of the scenes. Clustering tool calculates a similarity/distance
matrix between all the scenes. Further analysis, such as, vari-
ous forms of clustering or visualization can be performed us-
ing that matrix. Searching results in creation of new layer of
information, having the same spatial extent and granularity as
the lattice of scenes. Each cell of this layer contains a similar-
ity value between a user-selected query scene and all scenes
included in the dataset [5, 6]. Previously we have imple-
mented searching as the GeoWeb app for query-and-retrieval
of LULC pattern across the United States (LandEx-USA [7])
and as the GeoWeb app for query-and-retrieval of terrain land-
scapes across the country of Poland. These two apps are ac-
cessible from http://sil.uc.edu/. The goal of comparing is to
calculate similarity between individual spatially co-registered
scenes in two different co-registered lattices of scenes. The
most obvious application of this functionality is for pattern-
based change detection [8]. In pattern-based change detec-
tion the change occurs if the pattern changes; the change is
very small if the patterns at two time steps are very similar
even if raster categories have changed in a large number of
cells. In addition to change detection, comparing can be uti-
lized for assessment of two categorical products created with
different parameters. Finally, regionalizing allows for delin-

Fig. 2. A structure of similarity toolbox

eation of regions containing scenes with similar patterns. It
can be utilized for finding LULC landscape types [9] from
land cover/land use datasets or physiographic provinces from
landform datasets.

3. THE SOFTWARE

The framework for pattern-based information retrieval from
categorical rasters is implemented as GeoPAT Geospatial
Pattern Analysis Toolbox (Fig. 1,2) including seven modules
written in ANSII C for GRASS GIS environment. GRASS
environment is used because it provides clear and mature
APIs and is publicly available. The central part of our tool-
box are the two libraries shared by all modules: histogramlib
which contains routines for scene signature modeling and
similarlib which calculates similarity between scenes. The
histogramlib currently offers four routines for constructing
histograms using four different pattern features: 1) crossprod-
uct which uses features described in [10, 5, 7]; 2) coocurence
where features are the pairs of categories [11, 12, 6]; 3) de-
composition, loosely based on the concept described in [13]
and [14]; 4) multidimentional cdf, designed for ordinal his-
tograms. The similarlib library contains several similarity
measures [15] including: Jensen-Shannon, Wave-Hedges,
Różiczka, Czekanowski, L1 and L2 Minkowski metrics or
Chi-Square.

Three modules included in the toolbox are designed for
data pre-processing (Fig. 1): p.sig.points is a tool for rapid
modeling of example scenes defned by point coordinates,
white p.sig.polygons is designed to work with scenes defined
by irregular regions. Finally p.sig.grid is intended to work
with large amount regullary arrange scenes. Toolbox works
in parallel with two grid systems: Gi which contains input
data and Gj which store results. The resolution and extend of
the Gi is managed by GRASS GIS system [16] and describes
the granulation of the input data. Structure of Gj inherits
Gi extend, while its resolution is determined by the integer
number which define the reduction of the original resolution.
Size of the scene is controlled by another parameter and may
exceed the resolution of the Gj grid, so adjacent scenes can
overlap.

For other modules (Fig. 2)implement scenarios as de-
fined in the 2. The p.sim.distmatrix produce distance ma-
trix; p.sim. search realities all tasks included in the searching
strategy; p.sim.compare is designed to study co-registered
scenes while p.sim.segment allow to split large data sets into
more or less uniform regions.

4. PERFORMANCE

To demonstrate performance of our software we run several
examples on various small and big datasets using a computer
with the Dual Xeon-8-core processors and 20GB of RAM.
Average performance times are presented in the Table 1. We
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task input output time
single scene signature modeling using coo-
curence algorithm

single scene 300× 300 cells
with 10 categories

single histogram with 55
bins

0s 73ms

grid of histogram modeling using coo-
curence algorithm

data layer 24000 × 27000
cells with 10 categories

grid of histograms 800×900
cells with 55 bins

2h 26m

grid of histogram modeling using coo-
curence algorithm

data layer 84000 × 64000
cells with 10 categories

grid of histograms 1680 ×
1280 cells with 55 bins

26h 39m

grid histogram modeling using crossprod-
uct algorithm

data layer 164000× 104000
cells, two input layers

grid of histograms 1640 ×
1040 cells with 192 bins

3h 46m

clustering scenes 164 single histograms with
55 bins

a similarity matrix 164×164 1s 12ms

query-by-pattern similarity with Jensen-
Shannon similarity measure

1 single histogram with 192
bins and 1640×1040 grid of
histograms

one 1640 × 1040 similarity
layer

6s 11ms

comparison of two co-registered grids of
histograms using Wave-Hedges similarity
measure

two 800 × 900 grid of his-
tograms

one 800 × 900 similarity
layer

0s 97ms

segmentation of single grid of histograms
with Euclidean similarity measure

one 800 × 900 grid of his-
tograms

one 800 × 900 layer of re-
gions with hemogenous pat-
tern

1s 28ms

Table 1. Comaprison of various tasks performed by similarity toolbox

also optimized p.sig.grid module through the application of
parallel computing using OpenMP library. Significant differ-
ences between frequently executed tasks like scene modeling
or various retrieval scenarios (orders of seconds) and rarely
run data preparation (order of hours) as well as modular con-
struction of the library allow to use our software in practical
implementations [7] and as a framework for complex scien-
tific analysis [6].

5. CONCLUSION AND FUTURE WORKS

The central idea of our concept is to perceive a raster con-
taining a very large number of cells, each carrying a sin-
gle value, as an another raster containing much smaller num-
ber of larger cells, each representing a local spatial pattern
of original values. We call this new raster a grid-of-scenes.
An important property of the grid-of-scenes is that it can be
processed by a GIS system much like any other grid provid-
ing that its cells carry a new type of attribute – scene signa-
ture. GeoPAT extends a GIS system by providing modules
and functions to build a grid-of-scenes form original raster, to
calculate scene signature attribute, and to geoprocess a grid-
of-scenes in a manner which is transparent to a GIS user.
Standard grid processing operations, such as, search, over-
lay, and segmentation, are performed on the grid-of-scenes in
a usual fashion even so, behind-the-scenes, GeoPAT uses a
pattern-specific query system instead a traditional SQL sys-
tem. GeoPAT makes possible spatial analysis at the higher
level of abstraction (pattern vs. cell), thus we expect that by
using it analysts would be able to address questions which

would be difficult to even formulate without it.

GeoPAT is an actively developed software, presently at
the very beginning of its development cycle. We expect that
users will contribute to GeoPAT project by making core mod-
ules more stable and by adding to the shared library of func-
tions. Roadmap for future development of GeoPAT is as fol-
lows:

Expansion of shared library. Existing shared library
of pattern signatures and distance functions reflects our own
hands-on experience which is restricted to land cover and to-
pography data having resolutions of 30-90 m/cell. We plan to
experiment with other types of data including ∼ 1m/cell im-
age and LIDAR datasets, as well as census grids, soil grids,
climate grids, etc. This will result in development of new
signatures and distance functions which will be added to the
library.

Improvements and expansions of core modules. At
present search and segmentation of grid-of-scenes are re-
stricted to single algorithms. We plan on expanding the mod-
ule p.sim.search to compound queries featuring AND and
OR logical connectors. With respect to segmentation we plan
on expanding p.sim.segment (which uses a region-growing
method) by adding different methods of segmentation.

User experience. At present GeoPAT is available as a re-
search tool whose current development concentrated on com-
putational efficiency rather than ease of use or ease of instal-
lation. If the idea of pattern-based GIS will gain momentum
we will develop a “customer” version of GeoPAT that is easier
to install and use.
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