
Connected Components Labeling for Giga-Cell Multi-Categorical Rasters

Pawel Netzela,b, Tomasz F. Stepinskia,1

aSpace Informatics Lab, Department of Geography,University of Cincinnati, Cincinnati, OH 45221-0131, USA
bDepartment of Climatology and Atmospheric Protection, University of Wroclaw, Kosiby 6/8, 51-621, Wroclaw, Poland

Abstract

Labeling of connected components in an image or a raster of non-imagery data is a fundamental operation in fields
of pattern recognition and machine intelligence. The bulk of effort devoted to designing efficient connected com-
ponents labeling (CCL) algorithms concentrated on the domain of binary images where labeling is required for a
computer to recognize objects. In contrast, in the Geographical Information Science (GIS) a CCL algorithm is mostly
applied to multi-categorical rasters in order to either convert a raster to a shapefile, or for statistical characterization
of individual clumps. Recently, it has become necessary to label connected components in very large, giga-cell size,
multi-categorical rasters but performance of existing CCL algorithms lacks sufficient speed to accomplish such task.
In this paper we present a modification to the popular two-scan CCL algorithm that enables labeling of giga-cell size,
multi-categorical rasters. Our approach is to apply a divide-and-conquer technique coupled with parallel processing to
a standard two-scan algorithm. For specificity, we have developed a variant of a standard CCL algorithm implemented
as r.clump in GRASS GIS. We have established optimal values of data blocks (stemming from the divide-and-conquer
technique) and optimal number of computational threads (stemming from parallel processing) for a new algorithm
called r.clump3p. The performance of the new algorithm was tested on a series of rasters up to 160Mcells in size; for
largest size test raster a speed up over the original algorithm is 74 times. Finally, we have applied the new algorithm
to the National Land Cover Dataset 2006 raster with 1.6 × 1010 cells. Labeling this raster took 39 hours using two-
processors, 16 cores computer and resulted in 221,718,501 clumps. Estimated speed up over the original algorithm is
450 times. The r.clump3p works within the GRASS environment and is available in the public domain.

Keywords: connected components labeling, divide-and-conquer technique, parallel processing, land cover dataset

1. Introduction1

Connected component labeling (CCL) is one of the2

most fundamental operations in pattern analysis. The3

original CCL algorithm (Rosenfeld and Pfaltz, 1966)4

was intended for binary images; its purpose was to iden-5

tify all 4- or 8-connected regions of pixels (clumps) hav-6

ing values of 1 and to assign each of them a unique la-7

bel. Subsequently, many different CCL algorithms have8

been proposed including multi-scan algorithms (Haral-9

ick, 1981; Hashizume et al., 1990), two-scan algorithms10

(Rosenfeld and Pfaltz, 1966; Rosenfeld, 1970), hybrid11

algorithms (Suzuki et al., 2003), and tracing-type algo-12

rithms (Rosenfeld, 1970; Hu et al., 2005; Chang et al.,13

2004). The most popular CCL algorithm is the two-14

scan algorithm (Rosenfeld and Pfaltz, 1966; Rosenfeld,15

∗Corresponding author. stepintz@uc.edu, tel/fax: 513-556-
3583/513-556-3370

1970). In image analysis, the CCL is a fundamental step16

in segmentation of binary image into constituent objects17

that a computer system needs to recognize. Applica-18

tions include optical character recognition, automated19

inspection, target recognition, medical image analysis,20

and computer-aided diagnosis (Ronsen and Denjiver,21

1984). Note that the aforementioned applications usu-22

ally involve images with n ≤ 106 pixels, which is conve-23

nient because the conventional two-scan algorithm has,24

in general, performance that depends steeply on size25

and complexity of an image and becomes impractical26

for large and complex images. Previous work on fast27

and efficient CCL algorithms (Asano and Tanaka, 2010;28

Stefano and Bulgarelli, 1999; Bock and Philips, 2010)29

is restricted to binary images and may not be extensible30

to multi-categorical rasters.31

In the GIS application, the CCL is needed to iden-32

tify clumps in a categorical raster (often a classified im-33

age) in order to convert the raster data into a shapefile34

Preprint submitted to Computers and Geosciences May 29, 2013

format, or for statistical characterization of the clumps.35

If clumps of a single category needs to be identified,36

a standard binary raster CCL algorithm can be applied,37

but if an application calls for identification of all clumps38

in all categories, the standard CCL algorithm needs to39

be extended in order to handle multi-categorical data.40

Such extensions to the conventional two-scan algorithm41

have been implemented in all major GIS software pack-42

ages. For example, in the GRASS (Geographic Re-43

sources Analysis Support System) (Neteler and Mi-44

tasova, 2007) the CCL algorithm is implemented as45

r.clump. Because r.clump implementation is based on46

the conventional two-scan algorithm, there is a practical47

limit on the size of the raster to which it can be applied.48

Advances in remote sensing result in ever increas-49

ing volume of high resolution imagery, many of which50

are automatically classified and turned into land prod-51

ucts, such as, for example, the National Land Cover52

Database (NLCD) (Fry et al., 2009; Xian et al., 2009)53

that maps land cover/land use over the entire con-54

terminous United States or Coordination of Informa-55

tion on the Environment (CORINE) (Lima, 2005) that56

maps land cover/land use over most of Europe. Simi-57

larly large rasters, depicting spatial distribution of nat-58

ural and/or anthropogenic features, can be constructed59

from other remotely sensed and/or ground gathered60

non-imagery data. We refer to such datasets as giga-61

cell rasters because they often contain > 109 cells; for62

example, the NLCD is a 16-classes raster containing63

1.6 × 1010 cells. Recently, calculating all clumps in64

a giga-cell raster become an issue in connection with65

development of a system for querying such rasters for66

local regions having patterns of categories similar to a67

given example (Jasiewicz and Stepinski, 2012). Note68

that calculating clumps in a giga-cell raster from smaller69

tiles and combining them together is not a solution be-70

cause it would lead to some clumps being artificially71

cut by tiling process resulting in erroneous statistics72

of clump sizes and shapes. An optimistic estimate of73

the time needed for a conventional two-scan CCL algo-74

rithm (as implemented in r.clump) to label all clumps75

in the entire NLCD raster is about 2 years using a two-76

processors, 16 cores computer.77

This paper presents an extension to the two-scan CCL78

algorithm aimed at reduction of the time necessary to la-79

bel all clumps in a giga-cell raster by two-to-three orders80

of magnitude. For the sake of specificity, we concen-81

trate on modifying the GRASS module r.clump using82

a divide and conquer technique and parallel processing83

to achieve a desired speed up. Our idea is based on an84

earlier work (Park et al., 2000) but extends it by the fol-85

lowing:86

• Input is not restricted to a binary raster, instead we87

allow for a multi-categorical raster with no limits88

on the number of categories.89

• Parallelization of computing processing90

• Performance tested up to rasters with 1010 cells.91

• Optimized implementation in GRASS takes advan-92

tage of GRASS custom spatial database and its93

ability of fast row-by-row data processing.94

Algorithm 1: Basic structure of r.clump
input : Multi-categorical rasterA
output: Connected components labels raster Q
for row = 1 to N do

read focus and previous rows;
execute algorithm assign labels to assign
temporary labels to cells in the focus row;
update dictionaryD with temporary labels;

end
re-order labels in dictionary to obtain consecutive
numbering;
for row = 1 to N do

read focus and previous rows;
execute algorithm assign labels to assign final
labels to cells in the focus row;
update dictionaryD with final labels;
write a focus row of labels to output Q;

end

2. Multi-categorical connected components labeling95

algorithm96

Multi-categorical CCL algorithm identifies all 4- or97

8- connected regions of cells sharing the same categori-98

cal values and assigns each of them a unique label. The99

r.clump, a multi-categorical CCL algorithm on which100

this work is based, is a variant of a two-scan algorithm101

modified for use in multi-categorical rasters; it assumes102

4-connectivity - a preferred type of connectivity when103

working with remotely sensed geospatial data. An input104

to r.clump is a rasterA that has N rows and M columns.105

A(i, j) refers to the element in row i and column j. To106

each cell inA a category class L is assigned; class L = 0107

indicates noData while the values L ≥ 1 indicate actual108

classes. An output of r.clump is a raster Q having the109

same dimensions as A and holding labels identifying110

unique connected components.111

2

Algorithm 2: Function assign labels
input : focus and previous rows ofA, previous

row of Q, label directoryD
output: current row of Q
for column = 1 to M do

if class , noData then
if class , classUp and class , classLeft
then

assignNewLabel;
addNewLabelToDirectory;

else
if class , classUp and class = classLeft
then

assignLeftLabel
else

if class = classUp and class ,
classLeft then

assignUpLabel
else

if LeftLabel = UpLabel then
assignUpLabel

else
assignUpLabel;
if pass = 1 then

updateDictionary
end

end
end

end
end

end
end

Algorithm 1 shows the basic structure of r.clump. The112

algorithm passes the raster twice. In the first pass it113

assigns temporary labels to the connected components114

and builds-up an array holding all already assigned la-115

bels and their equivalences; we refer to this array as116

“dictionary” and use symbol D do denote it. Because117

of the design of the algorithm the first pass results in118

possible over-labeling and existence of non-consecutive119

labels. The purpose of the second pass is to eliminate120

unnecessary labels and to make remaining labels con-121

secutive. The key part of Algorithm 1 is the function122

assign labels that assigns labels to the cells in the focus123

row; its design is shown in Algorithm 2.124

Algorithm 2 operates cell-by-cell in a focus row ofA.125

Because of assumed 4-connectivity, a focus cell (having126

class = class) is compared with only two other cells, a127

cell immediately to its left (having class = classLeft) and128

a cell immediately up (having class = classUp). Note129

that because of row-by-row, left-to-right processing of130

A both of these neighboring cells have already clump131

labels (LeftLabel and UpLabel) assigned to them before132

a focus cell is processed. As Algorithm 2 shows, as-133

signing a clump label to a focus cell is straightforward,134

except in the case where both of the neighbors happens135

to have the same class as the focus cell but are assigned136

different clump labels. In this case the focus cell fuses137

the two previously separate clumps. In Algorithm 2138

assignLeftLabel and assignUpLabel denotes operations139

of assigning the focus cell with labels from its respec-140

tive neighbors, whereas assignNewLabel denotes issu-141

ing a new label and addNewLabelToDirectory denotes142

appending D by its value. When focus cell fuses two143

clumps, it becomes necessary to record this equivalence144

using a process denoted by updateDictionary.145

The two parameters critical for the time of execution146

of r.clump are the length of the row M and the length of147

D. For a giga-cell rasters, like the NLCD, M = 161, 000148

and the length ofD ≥ 220, 000, 000. In contrast a small149

block of the NLCD raster (with size of 500 × 500 cells)150

has M = 500 and the length of D ∼ 1000. Thus, the151

major bottleneck in applying r.clump to giga-cell rasters152

is the great length ofD.153

3. Divide-and-conquer approach154

Our solution to overcome this bottleneck is to apply155

the divide-and-conquer technique. The idea (first pro-156

posed in the context of much smaller binary images by157

Park et al. (2000)) is to divide a raster A into a number158

of much smaller blocks which each block having dimen-159

sions of n × m with n � N and m � M. In this paper160

we will use blocks with n = m = 500 cells.161

3

In designing our divide-and-conquer CCL algorithm162

we take advantage of GRASS database structure which163

works most efficiently if the data are processed row by164

row. Therefore, instead of dividing entire raster A into165

blocks, we first divide it into horizontal buffers. A buffer166

has a height n, equal to the size of the block, and a167

width M, equal to the width of A. Thus, a giga-cell168

raster is processed in a buffer-by-buffer fashion. This169

is shown schematically on Fig. 1 where two (of many170

possible) buffers are shown. Each buffer is in turn di-171

vided into the set of square (n× n cells) blocks and each172

block is processed individually using original r.clump173

algorithm (see Algorithms 1 and 2) resulting in creation174

of local, block-specific temporary and small dictionar-175

ies of clump labels (see Fig. 1). Because each block176

is small (n = 500 cells in our calculations) local CCL177

calculations are very rapid. Moreover, because calcu-178

lating connected components for each block is indepen-179

dent from the data in the other blocks, the algorithm is180

ideally suited for parallel processing. We use OpenMP181

library (Chapman et al., 2007) to enable parallel pro-182

cessing (see the line “#pragma omp parallel for” in Al-183

gorithm 3).184

Algorithm 3: Divide-and-conquer CCL
input : Multi-categorical rasterA, blockSize
output: Connected components labels raster Q
Calculate a number, Nbu f f , of horizontal buffers in
A;
Calculate a number, Mblocks, of blocks in a buffer;
Create buffers and blocks;

for bu f f er = 1 to Nbu f f do
load horizontal buffer;
#pragma omp parallel for;
for block = 1 to Mblocks do

call Algorithm 1
end
for block = 1 to Mblocks do

merge labels in focus block with labels in
block to the left and a single row of data
locate up

end
save all labels in horizontal buffer;

end

Algorithm 3 show schematically the working of our185

divide-and-conquer algorithm. The ability to process186

multi-categorical data is achieved by using original187

GRASS r.clump algorithm as a base clumping algo-188

rithm. In the algorithm proposed in (Park et al., 2000)189

each block of data was clumped and its local label di-190

rectory was reconciled and merged with a global direc-191

tory resulting from blocks that have been already pro-192

cessed. This design would not allow for parallelization.193

In our design a number of blocks are clumped in par-194

allel before their labels are reconciled and merged with195

the global directory. This design feature is reflected in196

Algorithm 3 by existence of two separate loops over the197

blocks: the first loop clumps blocks in parallel and, after198

it finishes, the second loop merges the labels. The merg-199

ing of labels is performed using a technique described200

in (Park et al., 2000) extended to multicategorical data.201

[Figure 1 about here.]202

[Table 1 about here.]203

4. Experimental results204

In this section, we evaluate the effectiveness of our205

divide-and-conquer approach to connected components206

labeling of giga-cell multi-categorical rasters. The eval-207

uation is performed on the NLCD 2006 dataset.208

4.1. Data209

National Land Cover Database 2006 (NLCD2006) is210

a 16-class land cover classification scheme that has been211

applied consistently across the conterminous United212

States at a spatial resolution of 30 meters. NLCD2006213

is based primarily on the unsupervised classification of214

Landsat Enhanced Thematic Mapper+ (ETM+) using215

2006 satellite data. The data is given in Albers Equal216

Area projection. In this projection, the spatial region217

is bounded by following coordinates: north 3310020218

m, south 177270 m, east 2342670 m, west -2493060219

m. The entire region has 161,191 rows and 104,425220

columns of raster cells and it contains 16,832,787,875221

cells. Because of its size, the connected components la-222

bels of the NLCD raster cannot be calculated (in a prac-223

tical time frame) using the r.clump algorithm, or, to the224

best of our knowledge, any other existing clumping al-225

gorithm. Therefore we cannot test various algorithms226

on the entire NLCD; instead, we use a series of smaller227

regions (subsets of the entire NLCD) for testing the per-228

formance of our algorithm versus the standard r.clump229

algorithm.230

Table 1 summarize the six test regions selected for231

testing and referred to as regions Test 0 (the smallest)232

to Test 5 (the largest). The testing regions varies in233

raster size from ∼ 300 Kcells to ∼ 100 Mcells. Even234

4

the biggest testing region contains less than 1% of the235

cells of the entire NLCD raster. The geographical con-236

text of testing regions is shown on Fig 2. Testing regions237

cover the portion of Midwest US including the city of238

Chicago.239

4.2. Calculations240

Our calculations proceeded as described in section241

3 and outlined in Algorithm 3. Entire process could242

be described as wrapping the divided-and-conquer tech-243

nique over the existing multi-categorical CCL algorithm244

r.clump. The resulting code is referred to as r.clump3p;245

the letter “p” at the end of the name indicates that the246

code was optimized for parallel processing. In addition247

to the size of a raster and its complexity, there are two248

parameters that influence the performance of r.clump3p;249

(1) the number of blocks, and (2) the number of threads250

in parallel processing.251

[Figure 2 about here.]252

[Figure 3 about here.]253

We have evaluated the impact of block size on the ef-254

ficiency of computation by using different block sizes:255

50, 100, 500, 750, 1000 and 2000 cells, respectively.256

The smaller the block the more efficient is the core al-257

gorithm r.clump because of the shortness of the label258

dictionary. However, larger number of blocks leads to a259

larger overhead associated with merging labels from in-260

dividual blocks. Because of this trade-off we expect that261

there exists an optimal size of the block for which our al-262

gorithm exhibits optimal performance. Fig. 3 shows the263

results of testing dependence of algorithm performance264

on the block size (and thus, on the number of blocks).265

Calculations are performed using the two largest test-266

ing regions Test 4 (33 Mcells) and Test 5 (116 Mcells).267

As explained in section 3, all blocks have square size268

and the buffer height is equal to the block size. For this269

experiment we use only a single computational thread.270

The results indicate that block size of 500 or 750 cells271

is optimal from computational efficiency point of view.272

Next, we evaluate the impact the number of threads273

has on code performance. The computer available to274

us was equipped with two processors each having 8275

physical cores. With Hyper-Threading Technology, it276

allows running of up to 32 threads in parallel. Experi-277

ment aimed at establishing dependence of code perfor-278

mance on the number of threads was conducted using279

the largest test region (Test 5) having size of 116 Mcell280

and the two optimal choices for block size: 500 and281

750 cells. Fig. 4 shows the results which indicate that282

the optimal number of threads is 15-16, approximately283

equal to the number of physical cores in the computer.284

[Figure 4 about here.]285

[Table 2 about here.]286

[Figure 5 about here.]287

Based on these experiments we have concluded that288

block size of 500 cells and 15 threads running in par-289

allel offer the best performance of r.clump3p algorithm.290

We conducted experiments aimed at comparing perfor-291

mance of r.clump3p with performance of r.clump. This292

comparison includes the original r.clump algorithm run-293

ning on a single thread (this algorithm cannot be par-294

allelized), the r.clump3p algorithm running on a single295

thread and having a block size of 50 cells (as suggested296

in Park et al. (2000)), the r.clump3p algorithm running297

on a single thread and having a block size of 500 cells298

(an optimal size as suggested by our experiments), and299

the r.clump3p algorithm running on 15 threads and hav-300

ing a block size of 500 cells. The results are summa-301

rized in Table 2. Examining a row in Table 2 corre-302

sponding to the largest test raster (Test 5) we note that303

the our optimally-tuned algorithm achieved an overall304

speed-up of 74 times over the r.clump. The divide-and-305

conquer approach yields a speed-up of 23 times; addi-306

tional speed up of 3.23 times is due to parallel process-307

ing.308

Fig. 5 shows functional trends of execution time with309

the number of cells in a raster. Note that these trends310

are established on the basis of six test runs covering311

rasters with sizes up to ∼120Mcells. Because of an em-312

pirical character of these trends, their extrapolations to313

larger rasters needs to be taken with caution; it is likely314

that they underestimate the actual times needed. For the315

original r.clump algorithm a third order polynomial offer316

the best fit to the six test measurements, although a sec-317

ond order polynomial also offered a reasonably good fit.318

Extrapolating these fitted trends to a raster with 16,000319

Mcells (like the NLCD) yields about 2 years for the sec-320

ond order polynomial fit and 158 years for the third or-321

der polynomial fit. On the basis of these estimates we322

claim that, in practice, the original r.clump algorithm323

cannot be used for labeling connected components in324

giga-cell rasters.325

For our r.clump3p algorithm with optimal values of326

parameters (block size = 500 cells, number of threads =327

15) the best fit to the six test measurements is provided328

by either a linear function or the second order polyno-329

mial. Extrapolating these fitted trends to a raster with330

16,000 Mcells yields about 2 hours for the linear fit and331

5

16 hours for the second order polynomial fit. The actual332

calculations took 39 hours. Comparing this time with333

the most optimistic estimate for r.clump (2 years) yield334

a speed up of about 450 times.335

We used r.clump3p algorithm with optimal settings to336

label all connected components in the NLCD 2006 giga-337

cell raster. The calculation took 39 hours (1.6 days)338

and resulted in labeling of 221,718,501 clumps. In or-339

der to better appreciate the enormity of this task con-340

sider labeling of raster Test 0 shown in Fig. 2C. On341

this figure the 12,502 connected components of 0.36342

Mcell raster are shown using random colors. It is clear,343

from the pattern of clumps seen on Fig. 2C, that NLCD344

raster has larger complexity than most binary images345

for which bulk of CCL analysis has been conducted;346

large complexity of image/raster results in more time347

demand on a CCL algorithm. Note that Test 0 raster348

contains only 0.002% of cells in the entire NLCD raster.349

Thus, a task of labeling connected components in giga-350

cell rasters stemming from remote sensing applications351

is truly enormous.352

Conclusions353

The aim of this paper is to present a design of con-354

nected components labeling algorithm capable of be-355

ing applied to giga-cell size multi-categorical rasters.356

A necessity to label connected components in such357

large rasters arose in connection with a recent work358

(Jasiewicz and Stepinski, 2012) on pattern-based query359

system for retrieval of alike land cover scenes from high360

resolution, continental-scale dataset (NLCD 2006). In361

such a system an analyst selects a reference scene of in-362

terest and the system identifies all scenes in the dataset363

having similar patterns of land cover categories. A sim-364

ilarity function between two scenes is based on statistics365

of constituent clumps (their classes, sizes, and shapes)366

in each scene - since a need for clumping the entire367

NLCD. Note that an idea of pattern-based query is not368

restricted to land cover data as it can be utilized in a369

number of high resolution, high complexity continental370

or global scale rasters pertaining to natural or anthro-371

pogenic phenomena.372

Using a divide-and-conquer technique and parallel373

processing we have designed an CCL algorithm with374

performance that is two-three orders of magnitude bet-375

ter than standard CCL algorithms. The specific speed up376

depends on the size of the data and its complexity and is377

greatest for very large and complex rasters. We have im-378

plemented the proposed algorithm as a GRASS module379

r.clump3p and demonstrated its usability by perform-380

ing the connected components labeling for the entire 16381

giga-cell raster containing NLCD 2006. The r.clump3p382

algorithm required 39 hours to complete the calcula-383

tion on a computer equipped with 2 processor each hav-384

ing 8 cores. This is a very reasonable execution time385

considering that such labeling needs to be performed386

only occasionally. An estimate of speed up over a con-387

ventional CCL algorithm r.clump is 450 times. Thus,388

to the best of our knowledge, r.clump3p is the only389

algorithm capable of labeling this dataset in practical390

time frame. The r.clump3p implementation of our algo-391

rithm is available for download at http://sil.uc.edu and392

http://www.wgug.org.393

5. Acknowledgments394

This work was supported in part by the National Sci-395

ence Foundation under Grant BCS-1147702 and by the396

University of Cincinnati Space Exploration Institute.397

References398

Asano, T., Tanaka, H., 2010. In-place algorithm forest connected com-399

ponents labeling. Journal of Pattern Recognitions Research 1, 10–400

22.401

Bock, J. D., Philips, W., 2010. Fast and memory efficient 2–d con-402

nected components using linked lists of line segments. IEEE Trans-403

actions on Image Processing 19, 3222–3231.404

Chang, F., Chen, C. J., Lu, C. J., 2004. A linear-time component-405

labeling algorithm using contour tracing technique. Comput. Vi-406

sion Image Understanding 93, 206–220.407

Chapman, B., Jost, G., van der Pas, R., Kuck, D. J., 2007. Us-408

ing OpenMP: Portable Shared Memory Parallel Programming. The409

MIT Press.410

Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., Wickham, J. D.,411

2009. Completion of the National Land Cover Database (NLCD)412

1992–2001 land cover change retrofit product. Tech. rep., U.S. Ge-413

ological Survey Open-File Report 2008–1379.414

Haralick, R. M., 1981. Some neighborhood operations. In: Real415

Time/Parallel Computing Image Analysis. Plenum Press, New416

York, pp. 11–35.417

Hashizume, A., Suzuki, R., Yokouchi, H., etal., 1990. Analgorithm of418

automated rbc classification and its evaluation. Bio Med. Eng. 28,419

25–32.420

Hu, Q., Qian, G., Nowinski, W. L., 2005. Fast connected-component421

labeling in three-dimensional binary images based on iterative re-422

cursion. Comput. Vision Image Understanding 99, 414–434.423

Jasiewicz, J., Stepinski, T. F., 2012. Example-based retrieval of alike424

land-cover scenes from nlcd2006 database. IEEE Geoscience and425

Remote Sensing Letters in print.426

Lima, M., 2005. IMAGE2000 and CLC2000: Products and Methods.427

European Commission Joint Research Centre (DG JRC), Institute428

for Environment and Sustainability (IES), Land Management Unit,429

I-21020 Ispra (VA), Italy.430

Neteler, M., Mitasova, H., 2007. Open source GIS: a GRASS GIS431

approach, 3rd Edition. Springer, New York.432

Park, J. M., Looney, C. G., Chen, H. C., 2000. Fast connected compo-433

nent labeling algorithm using a divide and conquer technique. In:434

Shin, S. Y. (Ed.), Proceedings of the ISCA 15th International Con-435

ference Computers and Their Applications, March 29-31, 2000,436

New Orleans, Louisiana, USA. pp. 373–376.437

6

Ronsen, C., Denjiver, P. A., 1984. Connected Components in Binary438

Images: The Detection Problem. Research Studies Press.439

Rosenfeld, A., 1970. Connectivity in digital pictures. J. ACM 17, 146–440

160.441

Rosenfeld, A., Pfaltz, J. L., 1966. Sequential operations in digital pro-442

cessing. J. ACM 13, 471–494.443

Stefano, L. D., Bulgarelli, A., 1999. A simple and efficient connected444

components labelling algorithm. In: Preceding of the Tenth Inter-445

national Conference on Image Analysis, and Processing, Sept. 27-446

29, 1999, Venice, Italy. pp. 322–327.447

Suzuki, K., Horiba, I., Sugie, N., 2003. Linear-time connected-448

component labeling based on sequential local operations,. Comput.449

Vision Image Understanding 89, 1–23.450

Xian, G., Homer, C., Fry, J., 2009. Updating the 2001 national land451

cover database land cover classification to 2006 by using landsat452

imagery change detection methods. Remote Sensing of Environ-453

ment 113(6), 1133–1147.454

7

List of Figures455

1 Schematic diagram showing the idea of divide-and-conquer approach to CCL. 9456

2 Geographical context of testing regions. (A) Six testing regions overlaid on the map of land cover;457

different colors on the map indicate different classes of land cover as indicated by the legend. (B)458

The location of the largest testing region. (D) Zoom-in into the test region Test 0. (D) Individual459

connected components (clumps) in the test region Test 0 are shown by randomly assigned colors. . . . 10460

3 Dependence of calculation time on block size. 11461

4 Dependence of calculation time on number of threads. 12462

5 Empirically established dependence of computation time on the size of raster for various setting pa-463

rameters of r.clump3 algorithm. 13464

8

horizontal bu�er k1

block 1K1

horizontal bu�er k2

raster

block 2K1 block lK1

block 1k1

local dict.
block 2k1

local dict.

block lk1

local dict.

block 1k2

local dict.
block 2k2

local dict.

block lk2

local dict.

block 1K2 block 2K2 block lK2

bu�er K1 dictionary

bu�er K2 dictionary

global dictionary
. . .

. . .
. . .

thread #1 thread #2 parallel processing of blocks

Figure 1: Schematic diagram showing the idea of divide-and-conquer approach to CCL.

9

B
A

Developed
high intensity

Developed
med. intensity
Developed
low intensity
Developed
open space

Cultivated
crops

Woody
wetlands

Open water

Grassland

Deciduous
forest

Pasture/Hay

Evergreen
forest

100 km

Te
st
_
0

Te
st
_
1

Test_2

Test_3

Test_4

Test_5

C

D

Figure 2: Geographical context of testing regions. (A) Six testing regions overlaid on the map of land cover; different colors on the map indicate
different classes of land cover as indicated by the legend. (B) The location of the largest testing region. (D) Zoom-in into the test region Test 0.
(D) Individual connected components (clumps) in the test region Test 0 are shown by randomly assigned colors.

10

Figure 3: Dependence of calculation time on block size.

11

Figure 4: Dependence of calculation time on number of threads.

12

Figure 5: Empirically established dependence of computation time on the size of raster for various setting parameters of r.clump3 algorithm.

13

List of Tables465

1 Summary of test regions . 15466

2 Summary of performance of different CCL algorithms on testing regions 16467

14

Table 1: Summary of test regions
Name west east south north # of cols # of rows # of cells
Test 0 631937.32 650924.47 2070152.87 2087111.15 633 565 357,645
Test 1 618484.33 652332.65 2066638.38 2096869.84 1,128 1,008 1,137,024
Test 2 592075.21 653572.51 2063838.06 2118764.07 2,050 1,831 3,753,550
Test 3 581042.95 677994.21 2037352.38 2123943.93 3,232 2,886 9,327,552
Test 4 571882.80 754258.21 1963997.75 2126885.47 6,079 5,430 33,008,970
Test 5 496041.57 838381.87 1889801.01 2195560.59 11,411 10,192 116,300,912
NLCD -2493045.00 2342655.00 177285.00 3310005.00 161,191 104,425 16,832,787,875

15

Table 2: Summary of performance of different CCL algorithms on testing regions
Name of Number r.clump r.clump3p r.clump3p r.clump3p Number
test set of cells (1 thread, 50 cells) (1 thread, 500 cells) (15 threads, 500 cells) of segments

[Mcell] [s] [s] [s] [s] [#]
Test 0 0.36 1.49 0.78 0.81 0.81 12,502
Test 1 1.14 3.27 1.69 1.61 1.55 31,110
Test 2 3.75 12.20 5.62 3.76 3.28 89,887
Test 3 9.33 49.93 22.09 8.04 5.84 209,422
Test 4 33.01 279.57 97.92 25.11 14.48 532,079
Test 5 116.30 3,541.91 1,714.64 154.01 47.75 1,841,037
NLCD 16,822.78 - - - 141,039 221,718,501

16

