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LandEx - A GeoWeb tool for query and retrieval of
spatial patterns in land cover datasets

Tomasz F. Stepinski, Pawel Netzel, and Jaroslaw Jasiewicz

Abstract—The vast amount of data collected by satellites via
remote sensing is a valuable resource, however, it lacks machine
search capabilities. In particular, large land cover datasets, such
as the 30 m/cell NLCD 2006 covering the entire conterminous
United States, are rarely analyzed as a whole due to the lack of
tools beyond the basic statistics and SQL queries. Consequently,
the NLCD is underutilized relative to its potential. We address
this issue by introducing LandEx - a GeoWeb application for real
time, content-based exploration and mining of land cover patterns
in large datasets. By combining the functionality of online
computerized maps with the power of the pattern recognition
algorithm, LandEx provides an easy to use visual search engine
for the entire extent of the NLCD at its full resolution. The user
selects a pattern of interest (a query) and the tool produces a sim-
ilarity map indicating the spatial distribution of locations having
patterns of land cover similar to that in the query. Pattern-based
query and retrieval addresses the issue of structural similarity
between landscapes. The core of the method is the similarity
function between two patterns which is based on 2D land cover
class/clump size histograms and the Jensen-Shannon divergence.
The search relies on exhaustive evaluation using an overlapping
sliding window approach. LandEx is implemented using Free
Open Source Software (FOSS) software and adheres to the Open
Geospatial Consortium (OGC) standards. The wait time for an
answer to a query is only several seconds due to the high level
of system optimization. The methodology and implementation
of LandEx are described in detail and illustrative examples
of its application to different domains, including agriculture,
forestry, and urbanization are given. LandEx is available at
http://sil.uc.edu/landex/.

Index Terms—pattern-based similarity, computerized maps,
GeoWeb services, land cover datasets.

I. INTRODUCTION

URING the last decades, advances in remote sens-

ing have made it possible to collect vast amounts
of geospatial data. This deluge of data presents difficult
challenges in terms of storage and distribution mecha-
nisms. Although challenges in storage of big data have
been overcome, effective distribution of this data to end
users remains problematic. Large archives of remotely
sensed data have been created (for example: The National
Map Viewer (http://nationalmap.gov/viewer.html) or GeoBrain
(http://geobrain.laits.gmu.edu/)), but intelligent methods of
data retrieval are lacking. The most common way of ac-
cessing the content of large archives is to query them by
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geographical coordinates, time of acquisition, and sensor type.
A consequence of such metadata-based approaches is that data
retrieval from archives is restricted only to sites for which
prior knowledge of their relevance exists. This severely limits
the degree of utilization of existing archives; it is estimated
that less than 5% [1] of all data available in remote sensing
archives are actually used.

The solution is to develop a system capable of executing
a content-based query that interprets the actual content of
the data and returns instances that match the desired content.
Such systems have been extensively studied (see reviews by
[2], [3], [4]) in the context of natural image retrieval where
they are referred to as Content-Based Image Retrieval (CBIR)
systems. An image retrieval system contains a database with
a large number of unlabeled images and an algorithm that
retrieves images from the database on the basis of their
intrinsic similarity to a query image entered by the user. The
quality of the results varies depending on the content of the
query image. Applications of CBIR to remotely sensed images
in the geospatial domain have been also studied [5], [6], [7],
[8]. In particular, a method for query and retrieval of satellite
images was presented in [9]. To the best of our knowledge, the
research on application of CBIR in geospatial domain is still
in its early stages and no CBIR system for querying geospatial
images is available in the public domain.

In this paper we describe the GeoWeb implementation of
LandEx (Landscape Explorer) - a content-based map retrieval
(CBMR) system. LandEx bears an overall design resemblance
to CBIR systems, but it works on a different type of dataset
and yields a different type of output. First, LandEx is designed
to query categorical rasters (hereafter referred to as “maps”)
rather than images. The implementation of LandEx presented
here utilizes the National Land Cover Dataset 2006 (NLCD
2006) [10]. Second, LandEx does not work with a database
of many separate maps, instead, it creates its own database
by subdividing the NLCD 2006 into a large number of
(overlapping) tiles. It performs a search for spatial patterns
of land cover classes using the query-by-example principle;
a user selects a small tile from the NLCD 2006 as a query
and the system calculates similarities between the query and
all the other tiles in the NLCD 2006. Finally, the output of
LandEx is not a short list of best-matching tiles, but rather
a similarity map (of the same geographical extent as the
NLCD 2006) showing a degree of similarity between the query
and every other tile in the database. Such presentation of
search results is more appropriate for spatial datasets where
geographical context matters. The early version of our CBMR
system was described in [11]. The system has since been
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further developed resulting in ~ 102 increase in search speed.
This makes possible its implementation as a GeoWeb service.
The GeoWeb implementation of our CBMR system is called
LandEx and is freely available at http://sil.uc.edu/landex/; it
returns query results in real time.

The ability to query a very large NLCD 2006 database in
real time for specific patterns of land cover facilitates data-
mining-like exploration of this database. LandEx makes it
possible to pose questions about the spatial distribution of
land cover that are impossible to even formulate without it.
It makes utilization of the entire NLCD 2006 practical. The
purpose of this paper is to describe LandEx and to demonstrate
its abilities. The paper is organized as follows. Section II
summarizes our approach to designing a CBMR system.
Section III describes the implementation of LandEx. In Section
IV we demonstrate potential uses of LandEx. Discussion and
future work directions are given in Section V.

II. LANDEX METHODOLOGY

In LandEx a tile A is defined as a small subset of the
entire NLCD 2006. For convenience we use square-shaped
tiles with the size n x n cells. Each cell is labeled by one of
K = 16 nominal labels ¢y, ..., cx corresponding to the land
cover/land use (LCLU) classes in the NLCD 2006. A query Q
is a particular tile of interest selected by a user. There are two
major components of LandEx methodology: the algorithm for
calculating the similarity between Q and A and the execution
of the query over the entire extent of NLCD 2006.

A. Similarity between two maps

A method of calculating an appropriate similarity value
between two different maps is at the core of our methodology.
Existing research on map comparison [12], [13], [14], [15],
[16] pertains to the detection of temporal changes, to compar-
ison between different mapping methodologies, to validation
of LCLU models, and to assessment of map accuracy. Existing
measures assign a high value of similarity to a pair of raster
maps if the two maps show the same scene mapped from
the same perspective with the only difference being somewhat
different assignment of categories to corresponding cells. Note
that such measures will assign a small similarity to the pair
of identical maps if one is rotated 90 degrees with respect to
the other. This is because even though the patterns of the two
maps are identical, the corresponding cells will have different
class assignments. Thus, existing methods are not relevant
to the task of querying for similar spatial patterns where
the two maps are expected to be assigned a high similarity
value exclusively on the basis of an overall style or motif of
spatial pattern without regard to relative rotation, translation,
or some small degree of pattern deformation. Pattern-oriented
similarity measures [17], [18], [19], [20] were considered
in the context of landscape ecology using sets of landscape
indices. The set of landscape indices [21], [22] was used in
[20] to quantify spatial patterns in a map. However, it is not
clear how to define a similarity function on the basis of a set
of landscape indices. In [20] a set of 28 indices was calculated
for each map in a collection of 182 LCLU maps and used to

manually cluster the maps into 8 classes without defining an
algorithmic measure of similarity.

In LandEx we use an original method [11] of calculating
similarity between two maps. Our method is based on concepts
developed in the context of CBIR domain. Like most CBIR
methods our method has two components, pattern signature
and pattern similarity. Pattern signature is a compact math-
ematical description of a pattern and pattern similarity is a
function that assigns a numerical value of similarity between
any two patterns (maps) on the basis of their respective
signatures.

For pattern signature we use a class/clump-size histogram
constructed from all cells in the map. Class (in the form of
color) histograms are widely used in CBIR (for a review
see [3], [23]) because of their rotational and translational
invariance. One advantage of using class histograms in the
context of maps is the small number of classes (16 for the
NLCD 2006 versus 224 colors for a typical natural image).
Thus, a class histogram of a map can be constructed without
using quantization. On the other hand, a class histogram
accounts only for the overall bulk composition of classes in the
map but not for their spatial pattern. In order to incorporate
some spatial information into our signature we segment the
map into clumps (four-connected region of a single class)
using a standard connected components algorithm [24] and
calculate the size of each clump in terms of the number of
individual cells within it. Clump sizes are numerical data
that upon quantization constitute the second component of
our class/clump-size histogram. We quantize clump sizes by
assigning them to bins with ranges based on powers of two
(i.e. 1-2, 2-4, 4-8 etc). The number of bins, L, is determined by
the size of the map (tile). We have experimented with adding
shape of clump as an additional pattern descriptor. Using such
reacher pattern signature did not enhance performance of a
query while significantly lengthening its time of execution thus
shape was not incorporated into a signature. Each cell inherits
its clump-size class from the clump to which it belongs. The
resulting 2D histogram remains invariant to rotation and trans-
lation. Fig.1 shows an example of constructing a class/clump-
size histogram A(A) from a tile A. Fig.1A shows a tile A
with the size n = 500 and K = 16 classes. Fig.1B shows the
result of segmenting A into 1290 clumps (shown by assigning
a random color to each clump). Fig.1C shows A(A) with 16
land cover classes arranged along the x-axis and 14 clump-
size classes arranged along the y-axis. The z-axis indicates a
fraction of all the tile’s cells that belong to a given class/clump-
size bin. Because histogram A(.A) is normalized to unity it
can be thought of as a probability density function (pdf) of
a random variable X =(land cover class, clump-size class).
Fig.1C indicates that the most likely outcome of variable X in
tile A(.A) is “deciduous forest” in clumps having size class 12
and 9, and “developed open space” in clumps having size class
10 and 8. The computational cost of calculating histograms is
dominated by the cost of segmenting the tile into clumps and
varies depending on the complexity of a pattern. However,
this cost is not a major issue because in LandEx calculation
of histograms is performed off-line, they are pre-calculated
and don’t need to be evaluated during a query.
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Fig. 1.

fraction of cells

Constructing a class/clump-size histogram. (A) An n = 500 (15km x 15km) tile of NLCD 2006; different colors indicate different

land cover classes (see Fig.5 for a legend). (B) A tile segmented into clumps; random colors indicate individual clumps. (C) Class/size-clump

histogram of the tile.

Calculation of similarities between two histograms is an
on-line operation, each query requires ~ 10° similarity evalu-
ations. In order to provide a real time response to a query, the
similarity calculation needs to be very efficient. For this reason
we consider our histograms to be of the nominal type where
each bin is independent from other bins and the similarity of
the non-overlapping parts of the two histograms do not need
to be taken into consideration. There is a large selection of
possible similarity functions, for a comprehensive survey see
[25]. In LandEx we use the Jensen-Shannon divergence [26]
to calculate similarity between two histograms. We have cho-
sen the Jensen-Shannon divergence because of its robustness
and good performance in side-by-side comparison with other
measures [27]. In this context “divergence” is synonymous
with dissimilarity or distance - a quantitative degree of how
far apart the two histograms are. For two histograms A and B
the Jensen-Shannon divergence (JSD) measures the deviation
between the Shannon entropy [28] of the mixture of the
two histograms (A 4+ B)/2 and the mean of their individual
entropies, and is given by
A7) -+ HE) @)

JSD(A,B) = H (

where H(A) indicates a value of the Shannon entropy of the
histogram A

K L
H(A) = - Z Z Ai)j 10g2 Ai,j (2)
i=1 j=1

where A; ; is the fraction of cells belonging to class ¢ and
clump-size j. JSD is always defined, symmetric, bounded by
0 and 1, and equal to O only if A = B. Note that JSD can
be interpreted as the mutual information between variable X
having distribution (A+B)/2 and a binary indicator variable Z
where Z = 1 if X is from A (and has distribution A) and Z =
0 if X is from B (and has distribution B). Mutual information
gives an average reduction in unpredictability (entropy) of X
if the map is set.

The value of H(A) reflects the distributional character of
histogram A. A large value of H(A) indicates A is evenly
spread between the bins, whereas a small value of H(A)
indicates A is concentrated in just few bins. JSD measures

(in a single number) the difference between the distributional
characteristics of A and B. Note that if the two maps, A and
B, have similar histograms, A(A) and B(B), the histogram
of their mixture, (A + B)/2, is similar to each of the two
individual histograms and the value of JSD is small. If the two
maps have dissimilar histograms, the histogram of the mixture
is more spread than each of the two original histograms and
the value of JSD is large. A maximum difference, JSD=1, is
assigned for two histograms where each is having only a singe
but different bin (two maps each having a single but different
land cover class).

Taking advantage of the fact that JSD is bounded by 0 and
1 we define a similarity between A and B (and consequently
a similarity between A and B) as

JSS(A, B) = 100[1 — JSD(A, B)] 3)

where JSS stands for Jensen-Shannon Similarity. The factor
100 is added so the similarity is expressed in terms of
“percentage.” Fig.2 shows an example illustrating how the
values of JSS translate into visual similarity as perceived
by a human analyst. The query tile is shown together with
15 other tiles having a similarity to the query in the range
between 90% and 50%. We have arranged the retrieved tiles
into three series in such a fashion as to show the perceived
“correlation” between the values of JSS and the visual changes
in the pattern. It is clear that as the value of JSS decreases
from 100% the variation of patterns assigned the same level
of similarity to the query increases. Interestingly, our system
provides an example of the “Anna Karenina Principle” (AKP)
[29]. According to the AKP, for something to succeed several
key aspects or conditions must be fulfilled. Failure in any one
of these aspects leads to failure of the undertaking. To match
the pattern of a tile to a query many different features of the
pattern must match. As tiles fail to match features of the query
pattern they diverge from a perfect match in different ways.
By performing hundreds of queries on NLCD 2006 we have
determined empirically that for a retrieved tile to be visually
perceived as highly similar to the query the value of JSS needs
to be 90% or more.
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Fig. 2. Visual comparison of a query tile with fifteen local tiles having similarity to the query values between 90% and 50%. Local tiles are
organized in three series in order to help in visualization between similarity value and visual divergence. See Fig.5 for a land cover legend.

B. Query Execution

For enabling a query over the entire NLCD 2006 we utilize
an overlapping sliding window approach. A square grid with
the resolution of k raster cells is superimposed over the
entire spatial extent of NLCD 2006. This grid forms a basis
for a similarity map resulting from the query. The query is
executed by means of exhaustive evaluation - the value of
JSS is calculated between the query tile and all the local tiles
assigned to a similarity grid. Because our method compares
maps using histograms, maps of different shapes and sizes
can, in principle, be compared. However, in order to compare
patterns on the same spatial scale, LandEx compares maps
having square shapes and the same sizes. The size of the map
tile is NV x k to allow for overlap of neighboring local tiles.
Thus, for example, for k& = 100 raster cells and N = 5, all
local tiles (and the query tile) have dimensions of 500 x 500
cells but the centers of neighboring tiles are only 100 cells
apart allowing for ample overlapping.

LandEx is envisioned as a tool for rapid exploration of the
entire NLCD 2006, so the queries need to be evaluated in real
time. To make this possible we pre-calculate histograms for
all local tiles off-line as they do not depend on the selection
of a query. The on-line evaluation is restricted to calculating
a single histogram of the selected query and to calculating the
values of JSS(A!,Q) between a histogram encapsulating the
query Q and all the histograms A!, [ = {1,..., M} encapsu-
lating local tiles, where M is the number of local tiles A'. The
result of the calculation is a similarity grid having values in the
range (0%,100%) indicating the degree of similarity between
a local pattern and the query. The GeoWeb implementation
of LandEx offers search capabilities on two different spatial
scales, the coarser scale characterized by £k = 100 and N = 5,
and the finer scale characterized by k£ = 50 and N = 3. This
limitation stems from the amount of computer memory needed

to store the pre-calculated histograms. Note that the off-line
version of LandEx has no spatial scale limitations, the query
can be executed for any combination of parameters k and N,
but the evaluation time is significantly longer due to a need to
calculate histograms.

The coarser spatial scale search corresponds to comparing
patterns of land cover over regions having a size of 15km x
15km with an overlap of 12km. These parameters have been
chosen empirically; they offer, in our judgment, the optimal
choice for US-wide similarity map. The resultant similarity
raster has dimensions 1612 x 1045 and requires 1,684,540
evaluations of JSS for its completion. The finer spatial scale
search corresponds to comparing patterns of land cover over
regions having size 4.5km x 4.5km with an overlap of 3km.
The resultant similarity raster has dimensions 3224 x 2090
and requires 6,738,160 evaluations of JSS for its completion.
In practice both searches typically take only a few seconds
to complete; the finer search does not take four times longer
than the coarser search because the evaluation of JSS values is
only one of many steps necessary to deliver a similarity map
to the user. The wait time for return of a query may increase
with increasing load on the server.

III. LANDEX IMPLEMENTATION

LandEx is a modern internet application running in a
web browser. It is supported by most modern web browsers
including Chrome, Firefox, Internet Explorer, and Safari. The
computational part of LandEx is located on a dedicated server,
whereas its interface (http://sil.uc.edu/landex) is provided via
a web browser. Communication between the two parts is
provided by the HTTP protocol. In other words, Landex is a
computerized map application with all functionalities available
through an active web page (like in, for example, Google
Maps). As with most geospatial web portals, LandEx adheres
to standards developed and published by the Open Geospatial
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Consortium or OGC (http://www.opengeospatial.org/). It uses
two of the OGC standards: WMS (Web Map Service) and
WPS (Web Processing Service). By using these standards we
ensure that LandEx can be accessed not only through our own
internet browser interface but also by third party software
packages compatible with WMS and WPS protocols. This
provides extra flexibility for utilizing the core functionality
of LandEx.

LandEx is running on a server with the Linux system and
all of its components are Free Open Source Software (FOSS)
software. The architecture of LandEx is shown in Fig. 3; its
main components are:

1) thin client in web browser environment;

2) web server;

3) map server which provides OGC services;

4) calculation engine based on the GRASS system.
LandEx’s browser interface is based on JavaScript libraries:
ExtJS with GeoExt and OpenLayers. Through this interface
a user can access all functionalities (summarized in Fig. 4)
expected from computerized map application. The server side
of LandEx contains three components: the web server, the
map server (working also as a map cache), and the calculation
engine. Apache Web Server (http://httpd.apache.org/) is used
as the web server component. It publishes the LandEx web
page with user interface and provides the necessary JavaScript
libraries. It is also utilized as a firewall so only selected OGC
services are exposed to the extranet while the administration
elements of the map server are restricted to the intranet.

GeoServer (http://geoserver.org) — an OpenSource OGC
compliant software — is used as the map server. One ad-
vantage of using GeoServer is that it has built-in GeoWeb-
Cache (http://geowebcache.org/) application that provides pre-
rendered map tiles. This assures highly efficient handling of
map requests with low system load. All base maps (admin-

Software architecture of LandEx. See main text for description.

istrative boundaries, land cover, and shaded relief) are pre-
rendered and cached using the GeoWebCache. We utilize two
GeoServer plugins (WPS service and Python scripting) which
are used to control the calculation engine.

LandEx calculation engine is based on the GRASS system
(http://grass.osgeo.org/; see also book by [30]) and the XML-
RPC server. Communication between the calculation engine
and the map server uses the XML RPC protocol. The XML
RPC-based communication module, custom built for LandEx,
distributes requests from the map server to GRASS modules
and controls the flow of results from the calculation engine to
the map server. The most important function of the calculation
engine is the computation of a similarity map for a given
query. The processing flow is as follows: In the first step,
a user selects the size and the position of a query region
utilizing LandEx web interface. This information is sent to
the map server which checks the request and sends it to
the calculation engine. The calculation engine performs the
similarity calculation and converts the results to the GeoTIFF
format. Next, the GeoTIFF file is transfered to the GeoServer
datastore where it is registered as a new layer. The map server
returns the new layer to the web client which adds it into the
layers tree and makes it visible to the user. The new similarity
layer is available for the user for 20 minutes before being
deleted to prevent the piling up of a large number of layers
in the server memory, but the user is given the option to save
the similarity layer as a GeoTIFF file.

The real time functionality of LandEx is due to optimization
of system performance. Histograms data are pre-calculated and
stored in separate files, so they don’t need to be calculated dur-
ing each query request. Calculation procedures use OpenMP
library for the parallelization of the work. Network File System
(NFS) protocol is used to achieve fast transfer of large files.
As a result it takes only several seconds for LandEx to return a
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similarity map in response to a query. LandEx architecture can
be realized on one computer or on several different machines.
This makes the system scalable and allows it to fit to load
while preserving a fast response to each query.

IV. EXAMPLES

As a GeoWeb application, LandEx is a dynamic content
intended to be experienced interactively in the web browser.
In this section we give four examples of LandEx usage
within constraints imposed by a static medium of conventional
figures. A reader is encouraged to follow up on these examples
by using LandEx. In particular, dependence of similarity map
on spatial scale varies with a particular choice of a query
but can be readily examined using the tool. Note that these
examples are meant to highlight how LandEx can be applied
to explore the land cover dataset, but are not intended as actual
contributions to featured domains.

A. Cultivated crops with different criss-crossing patterns

One of the 16 land cover classes in NLCD 2006 is the
“cultivated crops” class. The spatial extent of this class is
shown as a brown color on the NLCD 2006 map (see Fig. SA).
Using existing GIS tools based on SQL-like queries, all cells
labeled as “cultivated crops” can be extracted. Extracted region
would have a sieve-like topology because areas containing
crops are penetrated by roads, building and other features
assigned to different land cover classes.

In LandEX, a query identifies regions having similar patterns
of classes rather than pixels having the same class. A scene
dominated by cultivated crops is characterized not only by
that class, but also by a spatial pattern of minor classes re-
flecting intrusions into cropland. We have selected two scenes
completely dominated by the cropland class. The first scene,
extracted from the state of North Dakota and shown in Fig. 5C
inset, shows cropland criss-crossed by a sparse network of
roads. The second scene (of the same size), extracted from
the state of Ohio and shown in Fig. 5D inset, shows cropland
criss-crossed by a denser network of roads and punctuated by a
few very small plots of forest. These queries were processed by
LandEx using a coarser spatial scale (see section 2.2) yielding
two US-wide similarity maps shown in Fig. 5C and Fig. 5D,
respectively.

7\
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N <<Uses>>
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Examination of the two similarity maps reveals regional
differences in the spatial character of cropland across the
US. Sparsely criss-crossed croplands (exemplified by the first
query) are located mostly in the states of North Dakota,
Minnesota, and Iowa, whereas more densely criss-crossed
croplands (exemplified by the second query) are mostly re-
stricted to Ohio. Explaining these differences is beyond the
scope of this paper. Note that using LandEx it took only a
very short time to explore this potential issue.

B. Forest consolidation

Land cover maps have a long history of uses in United
States forestry science and management [31]. In particular,
analyses of spatial patterns in NLCD were used to report forest
fragmentation statistics on a national scale. Forest fragmen-
tation threatens the sustainability of forest interior environ-
ments, thereby endangering subordinate ecological attributes
and functions. Standard GIS indices, such as Forest Area
Density (FAD), have been used to assess spatial distribution of
degree of fragmentation [32]. LandEx presents an alternative
method of conducting such assessment. An exploration of
the spatial distribution of specific forest patterns may be
performed by selecting a representative query and analyzing
a resultant similarity map. A particularly simple exploration
involves submitting a query that represents a region dominated
as much as possible by a single class of forest.

Fig. 6 shows the results of two such queries, both using a
finer spatial scale (see section 2.2). The first query (shown in
Fig. 6A inset) represents a region of consolidated evergreen
forest. The resultant similarity map (Fig. 6A) shows the US-
wide spatial distribution of similarity to the query, which could
be considered as a proxy for the degree of forest fragmentation.
High values of similarity (red colors on Fig. 6A) indicate
high similarity to the query - regions totally dominated by
consolidated evergreen forest. Decreasing values of similarity
indicate a lesser similarity to the query (orange and yellow
colors on Fig. 6A) - regions only partially occupied by
evergreen forest, due most likely to an increased degree of
fragmentation. The second query (shown in Fig. 6B inset)
represents a region of consolidated deciduous forest. The
resultant similarity map (Fig. 6B) could be considered a proxy
for US-wide spatial distribution of the degree of deciduous
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Fig. 5.

D D G
G

cultivate emergent
Chops™™D  (lesies

Similarity maps for croplands with different criss-crossing patterns. (A) The NLCD 2006 map. (B) The legend to the NLCD 2006

map. (C) Similarity map in response to the sparsely criss-crossed cropland query shown in the inset; a circle indicates the location of the
query scene. (D) Similarity map in response to the densely criss-crossed cropland query shown in the inset; a circle indicates the location

of the query scene. Spatial resolution of similarity maps is 3 km.

query

uery

Fig. 6. Similarity maps for queries pertaining to: (A) consolidated evergreen forest, and (B) consolidated deciduous forest. Similarity legend
could be used as a proxy for degree of forest segmentation. The Spatial resolution of these similarity maps is 1.5 km.

forest fragmentation. Note that these results were generated
by LandEx with minimal effort; the bulk of effort went into
finding the representative queries. An extensive exploration of
forest patterns can be conducted by running a large number
of targeted queries and analyzing their results.

C. Similarity of urban land cover patterns

Urbanization is the process of transforming natural or
agricultural landscapes into built-up environments. Thus, in
land cover maps, such as the NLCD 2006, urban areas appear
as patterns of developed, natural, and cultivated classes. The
urban patterns change from one location to another reflecting

local differences in the composition of the pre-urbanization
landscape and an array of factors related to the actual ur-
banization process. Quantitative analysis of urban land cover
patterns is traditionally performed using landscape indices
(for references see [33]). Most studies focus on growing
urbanization and thus compare land cover patterns of the
same area at different times. Work on comparing patterns of
different urban areas at a fixed time step is limited [34] but still
based on methodology of landscape indices. LandEx offers
a complementary method of studying urbanization patterns.
Whereas the landscape indices methodology is most useful for
in-depth comparison of two or three a priori selected urban



IEEE JSTARS, VOL. X, NO. X, APRIL 2013

areas, LandEx enables exploration analysis with the goal of
finding all locations featuring urban patterns most similar to
a given query.

In order to demonstrate the application of LandEx in such
context we have selected a 4.5km x 4.5km query featuring
Clear Lake - a suburb of Houston, Texas and the home of
the NASA Johnson Space Center. The search was executed
using the finer spatial scale (see section 2.2). Fig. 7 shows
the results of our query; although the query was executed for
the entire NLCD 2006 dataset, only the Houston metropolitan
area is shown. Fig. 7A shows the fragment of the NLCD
2006 restricted to the Houston metropolitan area. Fig. 7B
shows the similarity map restricted to the same area. The
query and the three other selected regions, labeled C, D,
and E are highlighted on the similarity map. The closeups
of these regions are also shown in Fig. 7. Regions C and
D are examples of locations having a pattern of land cover
similar to the query. The region E covers downtown Houston
and is clearly not similar to the query. This is because the
downtown is dominated by the class labeled as “developed,
high intensity” which is rare in the query and the other two
regions (all suburbia of Houston). The similarity map gives
the geographical distribution of the parts of Houston most
similar to Clear Lake from the point of view of the land cover
pattern. The areas similar to Clear Lake are all suburbia, but
not all of Houston suburbia are similar. The actual analysis of
factors responsible for the observed distribution of similarity
is beyond the scope of this paper.

D. Rural land cover patterns featuring forest and pasture

For the last example we have selected a 15km x 15km query
located in the Monroe county, Kentucky near the border with
Tennessee. This scene (shown in the right inset in Fig. 8A) is
dominated by deciduous forest (shown in green) and pasture
(shown in yellow) with small addition of cultivated crop class
(shown in brown). The two dominant classes in the scene form
a pattern of uniform mixture with a characteristic length scale
that must reflect natural conditions, land management policies,
economic conditions, and societal structures. The search was
executed using the coarser spatial scale (see section 2.2).
Fig. 8A shows the resultant similarity map restricted to the
Kentucky - Tennessee - Missouri area. The entire similarity
map is shown in the left inset in Fig. 8A, it shows that most
locations with high values of similarity are spatially restricted
to the area shown in the main figure. Highly similar patterns
occur nearby the location of the query, but also in extended
portions of Missouri and Tennessee.

Fig. 8B shows a closeup of the NLCD 2006 map in the
immediate vicinity of the query location, whereas Fig. 8C
shows the similarity map restricted to the same area. The
location of the query is highlighted on both maps. Comparison
of the two maps shows in detail how the degree of similarity
changes with changing patterns of landscape. Recall that both
the query and each local scene have dimensions five times the
dimension of a cell in which the value of similarity is stored
(the smallest granulation in Fig. 8C).

V. DISCUSSION AND FUTURE DIRECTIONS

We have developed LandEx - a qualitatively new tool for
exploring patterns in large geospatial datasets. Until now
geospatial data could only be parsed cell-by-cell using SQL-
like queries. Although cell-by-cell comparison of remotely
sensed data is useful for local purposes, pattern-by pattern
comparison is much preferable for regional-scale or larger-
scale assessments because it addresses the question of struc-
tural, and thus semantic, similarity. Unlike a cell, pattern
has rich enough content to have functional significance for
a system, as in the examples considered in section 4. By com-
bining the functionality of computerized maps with the power
of pattern recognition algorithms, LandEx makes possible
content-based, machine-aided exploration of the entire NLCD.
Two elements of LandEx are of particular importance: it’s a
web-based application available to everyone, and it offers real-
time search capabilities. This combination makes it possible to
pose questions that are impossible to even formulate without
such a tool.

Like all content-based retrieval systems LandEx needs to
assign a single number to express objectively but very con-
cisely a degree of similarity between two scene-patterns. Note
that this is different from the case when in-depth comparison
of two scene-patterns is needed. In such case a lengthened
description of similarity is preferable at the price of reduced
objectivity. For example, several landscape indices, pertaining
to different features of patterns, can be calculated objectively,
but the overall degree of similarity needs to be set by a human
analyst by weighing the relative importance of these indices.
As there is a large number of ways to concisely characterize a
pattern, there is also a large number of possible similarity mea-
sures [27], but only one (considered to be “well performing”
in the context of CBIR) is currently implemented in LandEx.
Future work will focus on implementing different measures
and assessing their relative performance. Objective evaluation
of tools like LandEXx is difficult because the notion of “ground
truth” cannot be defined. Evaluating performance of LandEx
is not unlike evaluating performance of different web browsers
- the result depends on the individual preferences of an
evaluator. Thus, our future work on the assessment of LandEx
performance must be based on the idea of crowdsourcing
[35] and aimed at minimizing “a semantic gap” [23] - a
difference between similarity as calculated by LandEx and that
as perceived by a typical human analyst.

LandEx technology is easily applicable to datasets other
than the NLCD 2006. It could be immediately applied to
the NLCD 1992 and 2001 given sufficient memory on the
server. It can be also applied to the raster version of the
CORINE dataset with minimal modification stemming from
the larger number of classes and a different map projection.
More extensive modification is necessary in order to provide
pattern search capabilities to the MODIS 500 m/cell global
land cover dataset (MCD12Q10). Global extent of MODIS
data requires additional steps to ensure that local tiles have
the same size and shape as the query tile. Finally, pattern-
based comparison of scenes can be applied to the large-
scale assessment of land cover dynamics. Whereas LandEx
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Fig. 7.

Similarity map for land cover pattern in Clear Lake, Texas. (A) The NLCD 2006 map of Houston metropolitan area. (B) The

similarity map to Clear Lake land cover pattern. Squares indicate locations of query and three other locations described in the main text.
Land cover maps of highlighted locations are shown to the right. Spatial resolution of similarity map is 1.5 km. For legends to NLCD 2006

and the similarity values see Fig. 5.

Fig. 8. Similarity map for land cover pattern in the Monroe County, Kentucky. (A) A closeup of similarity map into the Kentucky - Tennessee
- Missouri area; circle indicates location of the query. Insets show the entire similarity map (left) and the map of the query (right). (B)/(C)
The NLCD 2006 map /similarity map restricted to an immediate vicinity of the query. In maps (B) and (C) a rectangle indicates the location
of the query. For legends to NLCD 2006 and the similarity values see Fig. 5.

compares a single query to all other tiles taken from the same
dataset, its change-oriented variant would compare all pairs of
tiles taken from the same location but at different time steps.
Such a tool will find changes in pattern motifs rather than
cell-by-cell changes which may be a preferable approach to
the global-scale assessment of land cover dynamics. Note that
all available datasets have limited classification accuracy. As
LandEx uses each dataset “as is” its results (queries or change
analysis) can only be as good as the input datasets.
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