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Pattern-based assessment of land cover change on
continental scale with application to NLCD

2001-2006
Pawel Netzel and Tomasz F. Stepinski

Abstract—We present a method for assessing land cover change
on continental scale and with high spatial resolution. This is a
post-classification method, but instead of tracking transitions of
land cover classes on cell-by-cell basis the method measures the
change at a tile level by quantifying a difference between local
patterns of land cover at two different time steps. Pattern-based
change assessment is well suited for the large scale survey as it
addresses landscape dynamics rather than just simple land class
transitions. A tile is defined as a local area consisting of large
enough number of land cover cells to sample a distribution of
landscape but small enough to detect change with high spatial res-
olution; 4.5 km × 4.5 km square tiles are used. The level of change
is measured as the dissimilarity between motifs of tile patterns
at two time steps and is calculated using information-theoretic
metric called the Jensen-Shannon similarity. The method is
able to discriminate between different types of change including
change in geometric pattern, change in class composition, and
numerous class transitions without significant changes in either
pattern or composition. The methodology is applied to the
National Land Cover Dataset (NLCD) to obtain a 2001-2006
change map of the conterminous U.S. The resultant map shows (in
a high resolution of 3 km/cell) a spatial distribution of the degree
to which the landscape has changed in this time period. Both,
large regions (southeastern and Gulf regions, Pacific Northwest
region, and the state of Maine) of heightened landscape dynamics,
as well as small regions of sudden change due to fires, urban
growth etc. are clearly identifiable from the map. A fully-featured
online application for fast and convenient exploration of the
change map together with original land cover maps in their full
resolutions is available at http://sil.uc.edu/dataeye/.

Index Terms—land cover change, pattern recognition, NLCD
2001 and 2006

I. INTRODUCTION

LAND use/land cover (LULC) composition and change
are important factors affecting ecosystem condition and

function. LULC change detection based on multi-temporal re-
mote sensing data [33] has been established as a cost-effective
means for providing information on the occurrence of change
as well as its aerial extent and causes. Numerous techniques of
LULC change detection have been developed (for reviews see
[26], [6], [21]) as no single technique works equally well in all
contexts. Different contexts of LULC change detection involve
spatial scale (local, regional, continental, etc.), selection of
thematic classes (general, vegetation-based, urban-based etc.)
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and purpose (high accuracy quantitative, medium accuracy
qualitative, etc).

The majority of work on LULC change is conducted on
the local-scale involving a specific study area; consequently,
most change detection techniques are tuned to such appli-
cations [26]. Most change detection studies on a global-
scale concentrate on utilizing Moderate Resolution Imaging
Spectroradiometer (MODIS) products with a particular focus
on the issue of deforestation. They rely on cell-by-cell com-
parison between data taken at two time steps [46], [47] or on
examination of a time series of data at each cell [4], [28]. A
recent study [15] assessed deforestation on global scale with
resolution of 30 m using Landsat data. On a regional-scale, the
MODIS data and the time series technique were applied [27]
to the Albemarle-Pamlico estuary system to provide automated
change detection. In the United States, the availability of
the National Land Cover Database (NLCD) makes possible
investigating regional-scale change detection in contexts other
than deforestation. Xian et al. [44] used NLCD 2001 and 2006
data to derive a change matrix quantifying urban growth in the
Gulf of Mexico region. Hollenhorst et al. [18] used integration
of the NLCD and the Ontario (Canada) Provincial Land Cover
data to derive a change matrix for the Lake Superior basin over
the period of 1992 to 2001.

All existing large-scale LULC change detection methods are
cell-based just like the vast majority of the methods developed
for local-scale use. However, the purpose of assessing land
cover change on a large-scale may differ from the purpose
of assessing the change at a finer scale. Locally, change
assessment is driven by a desire to accurately catalog all
LULC transitions; the cell-based approach is very useful for
such a purpose as it unambiguously indicates for each cell
whether LULC transitions occurred or not. The aims of large-
scale LULC change assessment can be different. The first aim
is to search for all places where change has occurred [4],
[28], [27]. Such an aim is well addressed by the cell-based
approach, especially if coupled with segmentation technique
[28]. The second aim is to provide a comprehensive overview
of landscape dynamics in a geographical context, or, in other
words, to produce a large-scale map showing the spatial
distribution of the change rate and its character. Such an aim
is poorly addressed by the cell-based approach (see section
III). Thus, for example, the U.S. Geological Survey (USGS)
Land Cover Trends project (http://landcovertrends.usgs.gov/)
assessed LULC change over the U.S. at the level of ecoregions
[25], [2]. This provides statistical synthesis of landscape
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dynamics.
Our goal in this paper is to preset a pattern-based landscape

change detection method that assesses landscape dynamics
at spatial scale much finer than an ecosystem but much
coarser than an individual cell. The method is intended for
mapping landscape dynamics over continental or global extent.
The method relies on a post-classification comparison; it
uses LULC products, such as NLCD or CORINE as inputs.
However, a basic spatial unit of comparison is not a cell
characterized by its assigned LULC class but rather a locally-
defined section (hereafter referred to as a tile) characterized by
a pattern of LULC classes. LULC differences have often func-
tional significance for landscape and pattern-based comparison
addresses the question of landscape structural evolution rather
than simple magnitude of change [42].

The importance of pattern analysis for characterization of
LULC change (rather than its detection) has been recognized
in previous works [16], [13], [45], [29], [38] where landscape
indices [17] were used to characterize and compare LULC
patterns at two different time steps. However, landscape in-
dices are not well-suited for the single-valued comparison of
multi-categorical patterns which is required for quantitative
assessment of landscape change. This is because a large num-
ber of indices, all having different meanings, is necessary to
describe such patterns without any guidance as to their relative
contributions to the overall value of similarity. In the context
of LULC, several methods for calculating the single-valued
measure of similarity between patterns have been proposed
including polygon-based fuzzy pattern matching [32], [42] and
comparison of maps at multiple resolution [31]. These methods
are best suited for assessing change on local scale as they
are computationally expensive. They also lack rotational and
translational invariance - a pattern and its rotated or shifted
equivalent will be measured as being highly dissimilar.

Our methodology takes a different approach to quantifica-
tion of similarity between patterns, one inspired by a domain
of Content-Based Image Retrieval (CBIR). CBIR systems
[12], [9], [22] are designed to query databases of natural
images, but have also been applied to remotely sensed images
[8], [7], [23], [39]. A method similar in spirit to a CBIR
system was proposed by [3] for contextual reclassification
of LULC maps to improve their accuracy in the urban en-
vironment. Because CBIR systems are designed for querying
large datasets their similarity measures are computationally
efficient. They are also invariant to rotation and translation.
Recently, we have developed [20], [41] a Content-Based Map
Retrieval (CBMR) system - a variant of CBIR especially
designed for querying LULC maps (and other categorical
rasters) rather than images. The GeoWeb implementation of
our CBMR system for querying LULC patterns in NLCD
2006 is available online at http://sil.uc.edu/landex/. Here we
have modified our CBMR system from its query and retrieval
function (comparison of a reference pattern to all other local
patterns at the same time step) to the change detection function
(pair-wise comparison of spatially co-registered local patterns
at two different time steps) and applied it to assess LULC
changes over the conterminous United States using the NLCD
2001 and 2006. The result is a map showing the spatial

distribution of the degree to which local LULC patterns have
changed between 2001 and 2006. A zoomable web-based
application showing the resultant map of change as well as the
NLCD 2001 and 2006 maps in their full resolution is available
at http://sil.uc.edu/dataeye/

The rest of this paper is organized as follows. Section
II describes our pattern-based method of change detection.
In Section III we demonstrate different modes of using our
method and how they differ from a pixel-based methodology.
Section IV presents and discusses the resultant U.S.-wide map
of change. Discussion and future work directions are given in
Section V.

II. METHODOLOGY

Our pattern-based LULC change assessment method relies
on the post-classification comparison of local distributions of
land cover class. As the focus is on large-scale assessment,
potentially available input datasets are NLCD and CORINE.
Another potential dataset is the MODIS MCD12Q1 prod-
uct, however, this product lacks year-to-year consistency in
category assignments and may not be feasible for change
detection. In this paper we concentrate on the NLCD to
assess landscape dynamics in 2001-2006 time period over the
conterminous United States. The NLCD has a resolution of
30 m/cell. Each cell is labeled by one of K = 16 land cover
classes. Note that we are using nominal NLCD class labels for
our change assessment. The overall accuracy of class labels in
NLCD 2001 and 2006 approaches 80% but it varies between
different thematic classes and between various U.S. regions
[43]. Most confusion occurs among the NLCD classes that
contain grass in different contexts: “developed open space”
(class 21), “grassland” (class 71), “pasture/hay” (class 81),
“cropland” (class 82), and “emergent wetland” (class 95).
In addition, the class “developed open space” is relatively
highly confused with “developed low intensity” (class 22) and
“shrub/scrub” (class 52). These inaccuracies need to be kept
in mind when interpreting our results.

A spatial unit of change assessment is a local raster tile.
A tile A is defined as a square-shaped local section of the
NLCD having the size of n×n cells. A mosaic of land cover
classes within a tile forms a local pattern. A change occurs
if the local pattern alters from one time step to another (see
Fig. 1); an overall degree of pattern dissimilarity between two
time steps is taken as a degree of change. The tile’s size
determines the scale over which change is assessed. In this
paper we use tiles with n = 150 (4.5 km × 4.5 km) but we
have also run calculations using tile sizes of 15 km × 15 km
and 30 km × 30 km. A tile size is an arbitrary choice but
the change assessed over a larger area is statistically smaller
than the change assessed over a smaller area, so maps created
with larger tiles will show a smaller range of change. Using
tiles smaller than 4.5 km × 4.5 km risks undersampling the
landscape distribution.

We cover the entire U.S. with 1,684,540 4.5 km sized over-
lapping tiles. The purpose of the overlapping is to increase the
spatial resolution of the change map resulting in its smoother
appearance. Landscape changes in a continuous manner over
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Fig. 1. The concept of pattern-based change assessment. LULC maps at two time steps are divided into spatially co-registered tiles. A
dissimilarity between patterns within corresponding tiles is a measure of change. See Fig. 2 for the legend of land cover classes.

the U.S., so every point could be considered a center of a
local landscape. We have chosen a grid of local landscape
centers with grid spacing equal to 3 km, making neighboring
tiles overlap each other. Change is determined by comparing
2001 vs. 2006 patterns at each local tile. The results of this
comparison are stored in the 3 km/cell raster, which, upon
visualization, yields a U.S.-wide map of change.

In order to calculate a dissimilarity value between a pair of
local patterns at two time steps we use a method originally
developed for querying the NLCD 2006 for locations having
similar patterns [20], [41]. The method has two components,
pattern signature and pattern dissimilarity. Pattern signature is
a compact mathematical description of a pattern, and pattern
dissimilarity is a function that assigns a numerical value to a
pair of patterns on the basis of their respective signatures.

A. Pattern signature

For pattern signature we use a class/clump-size histogram
constructed from the cells in the tile. A clump (also refereed
to as a patch in context of landscape ecology) is a contiguous
group of same-class cells. Segmentation of the NLCD into
clumps is achieved using a connected components algorithm
[34], [30]. A clump size is a number of cells in a clump. We
quantize clump sizes by assigning them to bins with ranges
based on powers of two (i.e. 1-2, 2-4, 4-8 etc). The number of
bins, L, is determined by the size of the tile. In addition to its
land cover class, each cell inherits a clump-size class from the
clump to which it belongs. The 2D histogram of a tile‘s cells
(with respect to LULC classes and clump-size classes) is a
signature of a tile’s pattern. It estimates the joint distribution of
land cover classes and clump sizes and is invariant to rotation
and translation.

Fig.2 shows an example of constructing class/clump-size
histograms from co-registered tiles showing an urban expan-
sion between 2001 and 2006 in the suburbs of Las Vegas,
Nevada. Fig.2A shows the two tiles with the size n = 150.
Fig.2B shows the result of segmenting the two tiles into

clumps. Fig.2C shows 2D class/clump-size histograms with 10
land cover classes arranged along the x-axis and 14 clump-size
classes arranged along the y-axis. Note that only land cover
classes present in at least one of the two tiles (in this case 10
out of possible 16 classes) are shown on histograms. The z-axis
indicates a fraction of all the tile‘s cells that belong to a given
class/clump-size bin. Because each histogram is normalized
to unity it can be thought of as a probability density function
(pdf) of a random variable X =(land cover class, clump-
size class). Thus, in our method, calculating a dissimilarity
between two local LULC patterns reduces to calculation of
dissimilarity between two probability density functions. Note
that a joint probability distribution (land cover class, clump-
size class) can be marginalized with respect to the land cover
by summing over clump-size bins yielding a 1D histogram
reflecting just the bulk composition of a tile. For the location
shown in Fig. 2 the most noticeable difference between 2001
and 2006 histograms is the reduction in cells belonging to the
large clump-size “barren land class” bin and an increase in
cells belonging to the medium clump-size“developed medium
intensity” class.

B. Similarity between two patterns

The problem of calculating a dissimilarity value between
two patterns has been well-researched in the CBIR domain.
The challenge is to develop and use a dissimilarity measure
that corresponds to how people perceive similarity. An addi-
tional constraint on the choice of dissimilarity measure is its
computational cost; in our application we need to perform
almost 1.7 million dissimilarity evaluations (see above) so
a computationally efficient measure is needed. Given this
constraint our choice of dissimilarity measure is restricted
to those measures that do not take into consideration the
non-overlapping parts of the two histograms. This means,
for example, that semantic dissimilarities between land cover
categories [1] cannot be taken into consideration in our present
assessment. Within such constraints there is a large selection
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Fig. 2. Constructing pattern signatures. (A) Co-registered tiles of a NLCD at two time steps; different colors indicate different land
cover classes as shown on the legend. (B) Tiles segmented into clumps; random (non-NLCD based) colors indicate individual clumps. (C)
Class/size-clump histogram of the tiles.

of possible dissimilarity functions; for a comprehensive sur-
vey see [5]. We use the Jensen-Shannon divergence [24] to
calculate dissimilarity between two histograms because of its
robustness and good performance in the side-by-side compar-
ison with other measures [35]. In this context “divergence”
is synonymous with dissimilarity or distance - a quantitative
degree of how far apart the two histograms are. For two
histograms A and B (representing patterns at the same location
at two different time steps) the Jensen-Shannon divergence
(JSD) measures the deviation between the Shannon entropy
[37] of the mixture of the two histograms (A + B)/2 (a
histogram constructed by averaging corresponding bins of the
two contributing histograms) and the mean of their individual
entropies, and is given by

JSD(A,B) = H

(
A+B

2

)
− 1

2
[H(A) +H(B)] (1)

where H(A) indicates a value of the Shannon entropy of the
histogram A

H(A) = −
K∑
i=1

L∑
j=1

Ai,j log2 Ai,j . (2)

Ai,j is a fraction of cells belonging to land cover class i and
clump-size j. JSD is always defined, symmetric, bounded by 0
and 1, and equal to 0 only if A = B;

√
JSD has been proven

[10] to be a metric and we use it to measure a “distance”
between two patterns.

JSD can be interpreted as the mutual information between
variable X having distribution (A + B)/2 and a binary
indicator variable Z where Z = 1 if X is from pattern A
and Z = 0 if X is from pattern B. Mutual information gives
an average reduction in unpredictability (entropy) of X if the

pattern is set. The value of H(A) reflects the distributional
character of histogram A, a large value of H(A) indicates
A evenly spread between the bins (a scene where pixels
are evenly distributed between patches of different sizes and
LULC categories) whereas a small value of H(A) indicates
A concentrated in just few bins (a scene where pixels are
concentrated in patches having just few sizes and/or LULC
categories). JSD measures (in a single number) the difference
between distributional characters of A and B. Note that if the
two patterns, A and B, have similar histograms the histogram
of their mixture is similar to each of the two individual
histograms and the value of JSD is small. If the two patterns
have dissimilar histograms, the histogram of the mixture is
more spread than each of the two original histograms and
the value of JSD is large. A maximum difference, JSD=1,
is assigned for two histograms where each is having only a
single but different bin (two patterns each having a single but
different land cover class).

We define the similarity between A and B (and conse-
quently a similarity between the two patterns) as

JSS(A,B) =
[
1−

√
JSD(A,B)

]
(3)

where JSS stands for Jensen-Shannon Similarity. Both, JSD
and JSS can be applied as well to the marginalized probability
distributions (see previous sub-section) to assess changes in
bulk composition of land cover classes. Small values of JSS
indicate that tiles (their patterns or their bulk compositions) at
two time steps are dissimilar so change has occurred. Large
values of JSS indicate that the tiles are similar so no significant
change has occurred.

An implementation of the pattern-based LULC change
assessment methodology described in this paper is provided
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Fig. 3. Perceptual change in land cover and its numerical assessment. A) A series of four tiles in urban environments showing different
perceptual degrees of change between 2001 and 2006. B) A series of four tiles in rural environments showing different perceptual degrees
of change between 2001 and 2006. The numbers below each tile give the values of JSS (bold), JSS1, and ρ, respectively. See Fig. 2 for the
legend of land cover classes.

by the the Geospatial Pattern Analysis Toolbox (GeoPAT)
- a collection of GRASS GIS modules that integrates var-
ious tools necessary for processing geospatial data using
information derived from spatial patterns in categorical grids
[19]. This software is freely available for download from
http://sil.uc.edu/gitlist/geoPAT/.

III. ASSESSING CHANGE

Visual comparison of change maps with two layers of
NLCD (for 2000 and 2006, respectively) using our online
tool (see section 4.1) indicates that the JSS measure yields
results that by large are in agreement with the perceptual
notion of land cover change. Further verification by a diverse
group of users is needed to confirm this conclusion. As a
byproduct of our calculations we also compute two other
potential measures of change, one is the JSS calculated for
marginalized distributions (denoted by JSS1) and the second
is the fraction of unchanged cells in a tile (denoted by ρ).
Whereas the JSS measures similarity with respect to pattern
change, the JSS1 measures similarity with respect to change
in the bulk composition of land cover classes. The fraction of
unchanged cells is calculated as the number of cells in a tile
that keep the same land cover class at two time steps divided
by the total number of cells in a tile. All three measures have
a range between 0 (total change) to 1 (no change) but their
meanings and values are different.

Fig. 3 gives examples of tiles that changed between 2001
and 2006 together with the values of JSS, JSS1, and ρ.
Fig. 3A pertains to urban environments and shows a series of
four tiles characterized by progressively (from left to right)
smaller perceptual change. The three numbers below each
tile give (from left to right) the values of JSS (bold), JSS1,
and ρ. Fig. 3B shows similar comparison pertaining to rural
environments.

In order to better understand the three different measures
of change we constructed two scatter plots. Fig. 4A shows
a scatter plot of ρ vs. JSS1. The points on the scatter plot
correspond to all the tiles covering the United States. The
upper-right corner of the plot groups tiles that show very little
change, whereas the lower-left corner of the plot groups tiles
that show massive change. The tiles located between these

two extremes show some degree of change. Note that the great
majority of tiles are located near the upper-right corner as they
experienced little change between 2001 and 2006. The tiles
are centered around the diagonal of the plot indicating that,
on average, both measures, ρ and JSS1 have about the same
sensitivity. In other words, maps of change constructed using
these methods will have similar overall character. However,
the scatter of tiles around the diagonal line indicates that at
any given location ρ assesses change differently from JSS1.
These differences are especially pronounced for tiles located
far from the diagonal. For example, in the tile denoted by
the symbol P1 about 50% of cells have changed their land
cover class between 2001 and 2006 but the bulk composition
of land cover classes has not changed that much (as indicated
by the high value of JSS1). This tile, located in the state of
North Carolina, is shown at two time steps in Fig. 5A together
with corresponding histograms of the bulk composition of
land cover classes. The changes in this tile are due to the
cyclic nature of forest harvesting and regeneration resulting in
a chess board-like pattern of forest, shrub, and grassland. The
measure ρ corresponds to a gross change in a tile’s landscape
composition, whereas the measure JSS1 encapsulates (in a
single number) net changes of individual land cover classes
[40].

Fig. 4B shows a scatter plot of JSS1 vs. JSS. The values
of JSS are always smaller or equal to the values of JSS1

indicating that patterns are more susceptible to change than
bulk compositions. This is expected as, in general, more
conditions need to be met in order to match the geometry of
a pattern than in order to match bulk composition. Thus, JSS
is the most sensitive of the three change measures inasmuch
as a change map calculated using the JSS will show more
change than the maps calculated with ρ and JSS1. The tiles
located on the diagonal have the same degree of change in
the bulk composition as in the overall geometric pattern. The
tiles located increasingly below the diagonal are increasingly
assessed as showing more change in pattern than in bulk
composition. Tiles located toward the lower-right corner of
the plot (like the tile denoted by the symbol P2) experienced
a large change in the geometry of a pattern but a small change
in the bulk composition. This tile, located in the state of
Oregon, is shown at two time steps in Fig. 5B together with
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Fig. 4. Scatter plots comparing different measures of similarity between the tiles; all tiles covering the United States are plotted. A) The ρ
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corresponding histograms of the bulk composition and 2D
histograms encapsulating the patterns. The changes in this tile
are due to deforestation; in both years the site is dominated
by forest and shrub, but the forest class is dominant in 2001
whereas the shrub class is dominant in 2006. Nevertheless,
the histograms of bulk composition at these two time steps
are not that different as their similarity is relatively high
(JSS1 = 0.79). Examining the 2D histograms reveals that in
2001 the forest was consolidated in a large clump while the
shrub was scattered in smaller clumps, but in 2006 it is the
shrub that is consolidated and the forest that is fragmented -
hence large change in pattern has occurred (as indicated by
the small value of JSS).

IV. MAPPING CHANGE OVER THE CONTERMINOUS UNITED
STATES

For mapping the change over the entire conterminous United
States we utilize a grid having dimensions of 1045 rows and
1612 columns. Each grid unit holds the JSS value calculated
from NLCD 2001 and 2006 tiles centered on it. The unit is
somewhat smaller than the tile because we want the tiles to
overlap. Thus, whereas we use tiles having the size of n = 150
NLCD cells (4.5 km), we use grid units having the size of
n = 100 NLCD cells or 3 km/unit. When interpreting the
map it is important to remember that the value at the unit
(pixel on the map) pertains to a change over somewhat larger
area (150% × 150%) than the area of the pixel itself.

Fig. 6 shows the resultant map (see the next subsection on
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Fig. 6. Map of 2001-2006 land cover change over the conterminous U.S. constructed using the pattern-based approach and calculated using
the JSS measure. See the main text for description of selected regions denoted by letters from A to E.

how to access our online tool designed to explore this map
in detail). The color palette has been chosen to span from
deep blue for large values of JSS (no change or insignificant
change) to deep red for small values of JSS (significant
change). The goal of the map is to show a spatial distribution
of the degree to which the landscape has changed between
2001 and 2006 rather than to indicate specific transitions. The
overall first impression is that most of the U.S. experienced
little land cover change between 2001 and 2006 as the blue
color dominates the map. However, there are notable regional
exceptions including the southeastern and Gulf regions, the
Pacific Northwest region, and the state of Maine. These regions
show higher levels of landscape dynamic than the rest of
the country. This is roughly consistent with the NLCD 2001-
2006 change mapped [11] at the very coarse level of Landsat
path/row scene (approximately 183km × 170km extent). This
is also in agreement with an assessment of land cover change
in the period of 1973-2000 [2] using sampling of ecoregions
methodology. The ecoregions-based change map shows that
the regions identified on our map as having relatively high
levels of change in the period of 2001-2006, had also relatively
high levels of change during the preceding period of 1973-
2000. The ecoregions-based map also shows that additional re-
gions including Central Great Plains, Southwestern Tablelands,
Middle Rockies, Snake River Basin, and Columbia Plateau had
somewhat elevated levels of change during the period of 1973-
2000. Our map shows no significant change in these regions
in the period of 2001-2006. This may be because the change
in these regions has stopped or slowed down in the 2001-
2006 period or because our method is not detecting change in
regions composed mostly of NLCD classes with heightened
levels of confusion between label assignment (see section II).

With the resolution of 3 km/cell our map can identify
change on much finer spatial scale than an ecoregion or
Landsat path/row scene. To fully appreciate the level of detail
one has to use the online tool or download the full resolution
map (http://sil.uc.edu/downloads.html#maps). However, even
within the constraints imposed by the static medium of con-
ventional figures, some individual specific locations of change
can be identified on Fig. 6. Examples of such locations are
highlighted on Fig. 6 by letters A to E and shown in details
in Fig. 7.

Many red specks visible on the map in the western part
of the U.S. are changes related to forest fires. In particular, a
prominent red speck denoted by the letter A is the location of
the 2002 Hyman fire [14]. Fig. 7A shows that this area has
been covered by a well-consolidated forest in 2001, but the
2006 map shows a scar left by the fire. The location denoted
by the letter B coincides with the Great Salt Lake in Utah.
The close-up in Fig. 7B shows that the lake retreated from
its 2001 levels to expose more “barren land” in 2006 - a
dynamic that was registered as a ring of strong change on
our map. Locations denoted by the letter C correspond to
urban growth in the cities of Las Vegas, NV and Phoenix,
AZ. Fig. 7C shows that in just five years the growth in Las
Vegas has been significant enough to be noted even directly by
comparing the two land cover maps, but much more clearly on
the change map. Locations denoted by the letter D show (from
left to right) cities of Kansas City, St. Louis, Indianapolis, and
Columbus. In contrast to Las Vegas and Phoenix they show up
on our map as rings of pale yellow instead of rings of orange
and red indicating a small level of change. These cities did
not experience growth to the same degree as Las Vegas or
Phoenix did, but they had some level of urban development
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Fig. 7. Detailed view of selected regions highlighted on Fig. 6. The first row is the map of change, the other two rows are LULC maps in
2006 and 2001 respectively. See Fig. 2 for the legend of land cover classes and Fig. 6 for JSS color scheme. Regions are shown at different
scales.

in their suburbia. Fig. 7D shows the city of Indianapolis;
change cannot be detected easily from visual inspection of
the land cover maps, but it shows clearly on the change
map. Closer inspection using our online tool reveals details of
development responsible for the change. Linear features on the
map correspond to rivers and their surroundings. In particular,
the letter E denotes the Rio Grande river in New Mexico. The
portion of the Rio Grande river and the associated change in
land cover between 2001 and 2006 are shown in Fig. 7E. The
changes can be explained by fluctuating water levels.

A. Online tool for exploring maps of landscape dynamics

The best way to fully explore all three of our maps (based
on JSS, JSS1, and ρ ) while being able to compare them
with actual land cover in NLCD 2001 and 2006, is to use
our GeoWeb application DataEye (http://sil.uc.edu/dataeye/).
DataEye is a computerized map application with all expected
functionalities. A user can navigate through the map, zoom to
the region of interest, change layers (the three change maps
and the two time steps of land cover map), set transparency,
and download the portion of the map visible in the application
window to a file in the GeoTiff format. The DataEye allows for
rapid exploration of locations that experienced LULC change
between 2001 and 2006 and for investigating their underlying
causes.

V. DISCUSSION AND FUTURE DIRECTIONS

The methodology presented in this paper addresses the need
for assessing land cover change on a continental scale and
with high spatial resolution. Simultaneously fulfilling these
two requirements calls for a new methodological approach as

well as for a presentation of results in the form of interactive
media.

Given that in our approach change is defined over the tile,
we introduce two new measures of change encapsulating either
a difference in land cover patterns within the tile between
the two time steps (JSS), or a difference in tile land cover
composition between the two time steps (JSS1). Both of
these measures are defined as similarities between probability
distribution functions and thus are fundamentally different
from more conventional measures based on the percentage
of unchanged pixels (ρ). We argue that JSS is the best
all-purpose measure of change, but for some specific aims
one of the other two measures may be more appropriate.
Moreover, new and interesting information can be revealed by
comparing different measures. As demonstrated in Section III
tiles characterized by a significant number of cell-based class
transitions (relatively small values of ρ) and a small change
in composition (large values of JSS1) correspond to places
where patterns of landscape alternate without much change
in bulk composition. Tiles characterized by a small change
in composition (large values of JSS1) and a large change in
pattern (small values of JSS) correspond to places where the
geometry of the landscape changes without much change in
composition. Identifying the spatial distribution of such places
can be done by processing the maps of JSS, JSS1, and ρ but
this is beyond the scope of this paper.

We have also addressed the issue of presentation of our
results by making available a fully-featured online application
for fast and convenient exploration of our change maps. Using
the online application one can find the places in the U.S. that
have changed land cover (within the meaning of our three
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definitions) between 2001 and 2006 and to understand the
reason for the change.

Our methodology has also room to grow. In particular,
future research will explore the possibility of incorporating
similarities between LULC classes to our similarity measure.
Our formalism assumes that LULC classes are independent
from each other. This is the standard assumption when dealing
with categorical variables like LULC as calculating similarity
between instances (LULC classes) must involve a significant
dose of arbitrariness. However, it is clear that some LULC
classes are more similar than others and [1] has quantified
those dependencies using semantic similarities between the
classes. Utilizing semantic similarities and the so-called Earth
Mover’s Distance (EMD) [36] – a measure of dissimilarity
between two pattern signatures that can take into consideration
dependencies between LULC classes – we would be able to
recalculate the change maps to better reflect perceptual notions
of change. Moreover, the EMD allows calculation of distance
between two patterns having different LULC categories as
long as a matrix of semantic similarities between two different
legends is defined. Because [1] provides such a matrix for
NLCD 2001 and NLCD 1992, we would be able to construct
a 1992-2001 change map using the EMD. Finally, we will
construct a 2006-2011 change map utilizing newly released
NLCD 2011 data.
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