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Abstract

Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based
geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters
contain rich spatial information either because of their very high resolution or their very large spatial extent. Elemen-
tary units of pattern-based analysis are scenes – patches of surface consisting of a complex arrangement of individual
pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to
operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures – compact
numerical descriptors of patterns, and a library of distance functions – providing numerical means of assessing dis-
similarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign
signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval
from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and
analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different
styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping
physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all mod-
ules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of
NLCD is given. Performance evaluation is included to highlight GeoPAT’s applicability to very large datasets. The
GeoPAT toolbox is available for download from http://sil.uc.edu/.

Keywords: pattern analysis, query-by-example, large geospatial datasets, similarity, image classification, GRASS
GIS

1. Introduction1

Most spatial datasets in geosciences originate from2

remote sensing (RS) and are in the form of images.3

Therefore, there exists a significant body of literature4

on retrieving information from RS images (Richards,5

1999). Image classification - a process of converting6

an image into a thematic map of semantically meaning-7

ful classes - is the most common form of spatial infor-8

mation retrieval from an image (Lu and Weng, 2007).9

An original approach to image classification utilizes a10

pixel-based methodology. A pixel is the smallest ele-11

ment of a surface, as depicted in an image, for which a12
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value of a color is stored. A pixel-based classification13

algorithm assigns class labels to individual pixels. Note14

that this is fundamentally different from how an ana-15

lyst interprets an image by perceiving the coherence of16

colors on multiple scales simultaneously and assigning17

class labels to multi-pixel tracts on the basis of their tex-18

tures or patterns. Pixel-based classification algorithms19

may suffer from poor performance especially if applied20

to very high resolution (VHR) images, where individ-21

ual pixels correspond to small elements of real objects22

and their numerical attributes are not sufficient to rec-23

ognize the class of an object, or, if applied to very large24

images where the goal of analysis is to retrieve gener-25

alized classes (for example, when the goal is to retrieve26

landscape types rather than their constituent land cover27

classes (Graesser et al., 2012; Niesterowicz and Stepin-28

ski, 2013; Vatsavai, 2013a; Jasiewicz et al., 2014)).29
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Object-Based Image Analysis (OBIA) was developed30

(Blaschke, 2010; Lang, 2008) to alleviate the problems31

associated with pixel-based classification. In OBIA im-32

age is first segmented to simplify it by grouping pix-33

els into meaningful segments (called ”objects”) which34

are homogeneous with respect to pixel-based attributes.35

In the second step information is retrieved by classify-36

ing objects into semantically meaningful classes. OBIA37

algorithms get closer to the way an analyst interprets38

an image but they still suffer from a number of short-39

comings (Vatsavai, 2013b). First, segmentation itself is40

a complex and computationally expensive process and41

there is no single method that performs consistently well42

(does not under-segment or over-segment portions of43

an image) on different RS images. Second, because44

objects are, by definition, homogeneous segments of45

the surface, OBIA cannot be used to classify an image46

into highly generalized classes. For example, although47

OBIA can classify an image into land cover classes48

(low-level generalization) more accurately than a pixel-49

based classifier can, it still cannot classify it into land-50

scape types (high-level generalization). In other words,51

OBIA can utilize information about image texture but52

not information about spatial patterns.53

For the purpose of this paper we define a spatial pat-54

tern as a perceptual structure, placement, or arrange-55

ment of image objects having a geometric quality. We56

then define texture as a structure of pixels arranged57

quasi randomly and lacking geometric quality. Thus, a58

single land cover class in a VHR image (for example, a59

rooftop) is characterized by texture as it appears on im-60

age as a quasi random mosaic of pixels having a range61

of colors. However, a fragment of a thematic map show-62

ing an urban scene consisting of a spatial arrangement63

of several land cover classes needs to be characterized64

by its pattern.65

The case for classifying an image or image-like spa-66

tial dataset, for example a Digital Elevation Model67

(DEM), on the basis of spatial patterns arises in mul-68

tiple disciplines where a high level of generalization is69

desired. In RS, with VHR images containing rich spa-70

tial information, the use of a pattern-based classification71

method makes it possible to distinguish between differ-72

ent urban landscapes, for example, between informal73

settlements, industrial/commercial structures, and for-74

mal residential settlements (Graesser et al., 2012; Vat-75

savai, 2013a). In landscape ecology, it makes it pos-76

sible to distinguish between different landscape types77

(Niesterowicz and Stepinski, 2013; Cardille and Lam-78

bois, 2009) as well as between different types of forest79

structures (Long et al., 2010), and in geomorphology80

it makes it possible to identify and delineate physio-81

graphic units (Jasiewicz et al., 2014).82

It is only recently that methodologies for pattern-83

based information retrieval from images and other raster84

datasets have been proposed. Vatsavai (2013a) proposed85

a multi-instance learning (MIL) scheme as a means86

for the pattern-based classification of images. In this87

method, an image is divided into regular grid of lo-88

cal blocks of pixels. The data (a set of all multi-89

dimensional attribute vectors from each pixel) in each90

block is modeled using a multivariate Gaussian distri-91

bution. The distance (dissimilarity) between any two92

blocks, and thus between the two patterns contained in93

these blocks, is calculated as the probabilistic distance94

between their modeled Gaussian distributions using the95

Kullback-Leibler (KL) divergence. Using supervised96

learning based on the MIL scheme Vatsavai (2013a) and97

Graesser et al. (2012) classified RS images of several98

cities into formal and informal neighborhoods.99

Independently, we have proposed a general approach100

for pattern-based information retrieval from all types101

of geospatial datasets (Jasiewicz and Stepinski, 2013a;102

Stepinski et al., 2014). For our method to be broadly103

applicable and computationally efficient it uses an in-104

put (image, DEM etc.) that has been preprocessed us-105

ing a pixel-based classification and thus already con-106

verted into a categorical format. This categorical raster107

is divided into a regular grid of local blocks of pix-108

els. Because the data is categorical, each block can109

be compactly represented by a histogram of categories110

or other attributes derived from these categories. We111

have successfully applied this methodology to search112

for and classify land-cover patterns in the National113

Land Cover Dataset (NLCD) (Jasiewicz and Stepinski,114

2013a). We have also used it for an assessment of land115

cover change over the entire United States using the116

NLCD (Netzel and Stepinski, 2015), and for the iden-117

tification and delineation of physiographic units using118

DEM data (Jasiewicz et al., 2014).119

The concept of pattern-based information retrieval120

from geospatial datasets is at the beginning of its de-121

velopmental cycle. For this concept to mature much122

more work is needed, including application to many123

different datasets in multiple contexts. In this paper124

we present the Geospatial Pattern Analysis Toolbox125

(GeoPAT) - a collection of GRASS GIS modules that126

integrate the various tools necessary for experimenting127

with pattern-based information retrieval from geospa-128

tial data. GeoPAT is intended as a convenient plat-129

form for experimentation with the pattern-based anal-130

ysis of rasters including rasters having giga-cell and131

larger sizes. It integrates into the GIS system proce-132

dures for pattern description, pattern similarity, and the133
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Figure 1: Example introducing a concept of pattern-based analysis of spatial datasets. (Left) Hillshade rendition of DEM over 60 × 60 km region.
(Middle) DEM data classified into ten landform classes and divided into regular blocks. (Right) Close-ups of three sample blocks and histograms
of their landform classes.

search and retrieval of similar patterns. These concepts134

were originally developed for working with natural im-135

ages in the context of Content-Based Image Retrieval136

(CBIR) systems (Datta et al., 2008) but are now uti-137

lized by GeoPAT for the purpose of geospatial analyt-138

ics. Such integration allows a user to perform the stan-139

dard GIS tasks of mapping, map overlay, and segmen-140

tation on a grid of pattern-bearing blocks of pixels in a141

way which is already familiar (from performing simi-142

lar tasks on standard images). In other words, GeoPAT143

extends the standard GIS system by adding a new type144

of attribute – the pattern signature – and a new type of145

data query – a query-by-pattern-similarity (QBPS). This146

significantly lowers the cost of entry into experimenting147

with pattern-based information retrieval, helps to accel-148

erate further development of this concept, and makes149

possible the assessment of its utility in various domains.150

GeoPAT modules are written in ANSI C and are151

designed to work within the GRASS GIS 7 (GRASS152

Development Team, 2012) environment. Embedding153

GeoPAT in GRASS has a number of advantages: (1)154

GRASS is an open source software available for ma-155

jor computing platforms, (2) GRASS is especially well-156

suited to work with large datasets, and (3) incorporat-157

ing a toolbox into an already existing, well-established158

environment allows for an integrated computational159

pipeline that provides convenience and boosts efficiency160

(Körting et al., 2013). GeoPAT is an actively developed161

solution. The core of the toolbox consists of the seven162

modules that compute pattern signatures and perform163

the GIS tasks of comparing, searching, overlaying, and164

segmenting the rasters on the basis of similarity between165

local patterns. These modules provide the basic infras-166

tructure for pattern-based information retrieval and are167

not expected to be modified by a user. In addition, two168

libraries provide a selection of functions for extracting169

pattern signatures and for calculation of similarity/dis-170

tance between two patterns, respectively. As there are171

no standard means of representing spatial patterns and172

calculating a measure of similarity between them, we173

expect users to add to those libraries as they experiment174

with different datasets.175

The rest of this paper is organized as follows: Sec-176

tion 2 presents an overview of our toolbox architec-177

ture. Section 3 describes the most important functions178

in the shared libraries and section 4 describes the seven179

core geoprocessing modules. A case study (section 5)180

presents an example on how GeoPAT modules can be181

utilized to perform regionalization of land cover pat-182

terns into landscape types using either unsupervised or183

supervised approaches. Section 6 gives an assessment184

of the computational performance of the GeoPAT mod-185

ules and section 7 contains our discussion and conclu-186

sions.187

2. Software architecture188

As an introduction to GeoPAT we first give an illus-189

tration of the basic idea behind the pattern-based anal-190

ysis of geospatial data. For this we use a DEM with191

30 m resolution. The left panel in Fig. 1 shows a hill-192

shade rendition of a 2000 × 2000 cell DEM (we reserve193

the term pixel for images and use the more general term194

cell for all raster datasets). The entire spatial extent of195

the data is referred to as a region. Three clearly dis-196

tinct physiographic units are observed in this region and197
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one of the goals of pattern-based analysis is to delineate198

these units. In the preprocessing step, which is not a199

part of GeoPAT, DEM cells are classified into ten land-200

form classes using the geomorphons method (Jasiewicz201

and Stepinski, 2013b). The result of this classification is202

shown in the central panel of Fig. 1 with different colors203

indicating different landforms. This panel also shows a204

division of the region into a regular grid of blocks, each205

block containing a large number of cells forming a lo-206

cal, block-bounded pattern of landforms. A block is a207

particular example of a scene; in general, we refer to208

any subregion of the entire region as a scene.209

A grid of regular scenes (as in the middle panel of210

Fig. 1) is referred to as a grid-of-scenes. GeoPAT per-211

forms GIS operations on the grid-of-scenes in the same212

way as the standard GIS system performs similar oper-213

ations on the grid of cells. Thus, for example, to delin-214

eate the three physiographic units as seen in the sam-215

ple DEM GeoPAT will classify the scenes in a way that216

is analogous to how a standard pixel-based algorithm217

would delineate different landform classes. Significant218

technical differences in performing these operations on219

scenes vs. cells stem from differences in mathematical220

representations of patterns vs. numbers, and from dif-221

ferences in the definitions of a distance between patterns222

vs. distance between vectors.223

Close-ups of three sample scenes, labeled by red, or-224

ange, and blue frames are shown in the right panel of225

Fig. 1 with their corresponding histograms of landform226

classes. GeoPAT uses histograms as concise representa-227

tions of patterns. Note that the three scenes, each rep-228

resenting a different physiographic unit and exhibiting229

a different pattern of landform classes, happen to have230

different histograms of classes. However, in general, vi-231

sually different patterns may have similar histograms of232

classes. This is why GeoPAT uses more advanced his-233

tograms that encapsulate not only the composition of a234

pattern (the relative abundance of classes) but also its235

configuration (spatial arrangement of clumps – contigu-236

ous groups of same-class cells).237

In general, the input to GeoPAT is a categorical raster238

(classified original spatial dataset, for example, an im-239

age, DEM, etc.) or a set of co-registered categorical240

rasters. Additional rasters are needed for some tasks,241

such as, for example, a change detection task, or to pro-242

vide ancillary information for description of local pat-243

terns (see section 3.1). The raster’s region is subdivided244

into a regular grid (grid-of-scenes) having cells (referred245

to as s-cells) with the size equal to or larger than the size246

of the raster cells. Each s-cell is the center of a square247

scene containing a local pattern made up of cells with248

different class labels. It also stores a concise description249

of this pattern which is referred to as a signature. The250

size of the scene must be equal to or larger than the size251

of the s-cell. This allows GeoPAT to work with over-252

lapping scenes. If the size of the scene is equal to the253

size of the s-cell the scenes don’t overlap (as in the case254

shown in Fig. 1). If the size of the scene is larger than255

the size of the s-cell the scenes overlap. In the example256

given in Fig. 1 the size of the cell is 30 m and the size of257

the s-cell is the same as the size of the scene and equal258

to 6000 m.259

The core of the GeoPAT toolbox consists of three260

modules designed for extracting scene signatures from261

categorical data, as well as four additional modules for262

performing geoprocessing tasks on the grid-of-scenes.263

GeoPAT implements three different signature extraction264

modules: p.sig.points, p.sig.polygons and p.sig.grid.265

This is because some geoprocessing tasks require a de-266

scription of scenes not restricted to those defined by the267

grid-of-scenes. For example, a search task requires a268

comparison of scenes in a grid-of-scenes with a scene269

(a query) defined over a region not aligned with a grid,270

and a segment classification task requires calculating271

signatures from irregularly-shaped scenes. The role of272

geoprocessing modules (p.sim.distmatrix, p.sim.search,273

p.sim.compare, p.sim.segment) is to perform geopro-274

cessing tasks on scenes generated and described by the275

signature extraction modules. The names given to the276

modules adhere to the following convention: p. stands277

for pattern, sig. stands for signature, and sim. stands for278

similarity.279

In addition to modules, GeoPAT provides two li-280

braries of functions. The first library implements dif-281

ferent methods of extracting a signature from a scene.282

Functions in this library work with signature extraction283

modules. The second library implements different dis-284

tance measures between signatures. Functions in this285

library work with geoprocessing modules. We expect286

that users may want to add their own functions to both287

libraries. The overall software architecture of GeoPAT288

is shown in Fig. 2.289

3. Library functions290

Library functions implement concepts which facili-291

tate working with spatial patterns in a quantitative fash-292

ion. In the domain of geoscience working quantitatively293

with spatial patterns has been addressed in the fields of294

remote sensing (Datcu et al., 2003; Daschiel and Datcu,295

2005; Li and Narayanan, 2004; Shyu et al., 2007), land-296

scape ecology (Cain and Riitters, 1997; Long et al.,297

2010; Cardille and Lambois, 2009; Dilts et al., 2010),298

and cartography (Pontius, 2002; Remmel and Csillag,299
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Figure 2: Architecture of GeoPAT toolbox

2006). As GeoPAT uses categorical rasters, only pre-300

vious approaches developed in landscape ecology and301

cartography are potentially directly relevant. Because302

we are interested in pattern similarity measures that are303

rotationally invariant (for example, a scene and the same304

scene rotated by 90 degrees must be measured as identi-305

cal), cartographic approaches, which focus on compar-306

ing different maps of the same region for consistency307

and accuracy, are not directly relevant.308

In landscape ecology categorical patterns are de-309

scribed using landscape metrics (Haines-Young and310

Chopping, 1996; McGarigal et al., 2002; Uuemaa et al.,311

2009; Steiniger and Hay, 2009) which are rotationally312

invariant measures of compositional and configurational313

aspects of a scene. A collection of various landscape314

metrics forms an attribute vector which potentially can315

be used as scene signature. Several studies (Long et al.,316

2010; Kupfer et al., 2012; Cardille and Lambois, 2009;317

Cardille et al., 2012) used landscape metrics-based at-318

tribute vectors and the Euclidean distance to calcu-319

late similarities between mostly binary (forest/no for-320

est) scenes, but the validity of such an approach has321

not been demonstrated. Our own experience with us-322

ing landscape metrics for assessing the similarity be-323

tween scenes is negative. We have identified a number324

of issues for using landscape metrics in GeoPAT includ-325

ing the selection of metrics (this can be overcome by326

data reduction using PCA (Cushman et al., 2008)), the327

proper way to normalize metrics, and properly weight-328

ing the contribution of composition vs. configuration to329

the overall similarity value.330

Following the principles established in the field of331

Content-Based Image Retrieval (CBIR) (Gevers and332

Smeulders, 2004; Datta et al., 2008; Lew et al., 2006) –333

a non-geoscience domain where the issue of similarity334

between two rasters (natural images) has been studied335

extensively – GeoPAT calculates a signature as a (pos-336

sibly multi-dimensional) histogram of a pattern ”prim-337

itive features.” Primitive features are simple local el-338

ements of a pattern. For example, the cell’s class is339

a primitive feature. A combination of classes of two340

neighboring cells is an another example of a primitive341

feature. Many other such features could be designed.342

There is no generally preferred choice of primitive fea-343

tures; patterns in different datasets may be best encapsu-344

lated by different features. GeoPAT implements several345

popular methods of representing pattern by a histogram346

of primitive features, but it is expected that users may347

want to add their own.348

In GeoPAT a similarity between two scenes is cal-349

culated as a similarity between two histograms, each350

representing a pattern contained in its respective scene.351

Choosing the most appropriate similarity function is352

largely an empirical decision which depends on the353

dataset and on the choice of primitive features. GeoPAT354

implements several histogram similarity functions, but,355

as with primitive features, we expect users to add their356

own. Cha (2007) provides a comprehensive review of357

histogram similarity functions.358

3.1. Signature functions359

Signature functions define primitive features that360

characterize a local pattern bounded by an extent of a361

scene. From among many possible signatures we de-362

scribe three which are already implemented in GeoPAT.363

crossproduct – This method calculates signature as a364

k-dimensional histogram using k primitive features as-365

signed to each cell. Examples of such features include366

cell class, the size of the clump to which the cell be-367

longs, the shape of the clump and its spatial orientation368

(Williams and Wentz, 2008). Because all features must369

be categorical (so the histogram can be formed), numer-370

ical features need to be categorized. For example, clump371

sizes need to be categorized into size categories from372

the smallest to the largest. The number of bins in the373

crossproduct histogram is N1×N2× . . .×Nk, where Ni is374

the number of categories of i-th feature. Fig. 3A shows375

schematically a construction of crossproduct histogram376

from two features, cell class (N1=4 categories depicted377
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Figure 3: Three of the signature methods implemented in GeoPAT:
(A) crossproduct, (B) co-occurrence, (C) decomposition.

as different colors) and clump size (N2=4 categories de-378

picted as increasing size squares). In this example the379

crossproduct histogram has 16 bins, the value of each380

bin is a percentage of cells having specified cell class381

and specified clump size. Crossproduct signature is de-382

signed to be effective in encapsulating spatial structures383

with clear geometric quality (having relatively low com-384

plexity); an example of a dataset with such a structure385

is the land cover raster. In our pattern-based analysis of386

the NLCD (Jasiewicz et al., 2013; Stepinski et al., 2014;387

Netzel and Stepinski, 2015) we used the crossproduct388

signature with two features (cell class with 16 cate-389

gories and clump size with 14 categories) paired with390

the Jensen-Shannon divergence distance function (see391

section 3.2).392

co-occurrence – This method uses a color co-393

occurrence histogram (Barnsley and Barr, 1996; Chang394

and Krumm, 1999), a variant of the Gray-Level395

Co-occurrence Matrix (GLCM) originally introduced396

by Haralick et al. (1973) to characterize texture in397

grayscale images. In GeoPAT, color is replaced by cell398

class and a single cell separation of one pixel is used399

to calculate a co-occurrence histogram. This results in400

a single primitive feature - a pair of classes assigned401

to two neighboring cells; eight-connectivity is assumed402

for establishing the existence of a neighborhood rela-403

tionship between the two cells. Thus, eight features are404

calculated for each cell, but their total number is halved405

as the same feature is generated twice by the pairs of406

neighboring cells. For a scene with k cell classes, the407

co-occurrence histogram has (k2 + k)/2 bins, k of them408

correspond to same-class pairs, which measure the com-409

position of the classes in the scene, and (k2 − k)/2 bins410

correspond to different-class pairs, which measure the411

configuration of the classes in the scene. Fig. 3B shows412

schematically the construction of a co-occurrence his-413

togram for a scene with k=4 classes resulting in a his-414

togram with ten bins. The co-occurrence signature is de-415

signed to be effective in encapsulating spatial structures416

exhibiting high complexity patterns like the ones result-417

ing from a geomorphons-based classification of a DEM418

(see Fig. 1). In our pattern-based analysis of DEM data419

classified to k=10 landform classes (Jasiewicz et al.,420

2014) we used the co-occurrence signature with 55 bins421

paired with the Wave Hedges distance function (see sec-422

tion 3.2).423

decomposition – This signature method is inspired424

by the work of Remmel and Csillag (2006) to describe425

a scene using a set of sub-scenes having a hierarchy of426

sizes. For the decomposition method to work best the427

scene should be a square having a linear size of 2D cells.428

The scene with k cell classes is scanned without overlap429

by a series of square moving windows with sizes w = 2i
430

cells where i = 2, . . . ,D are the decomposition levels.431

The size of the maximum scanning window, 2D, is the432

size of the scene. At the smallest decomposition level433

i = 2 a scene is scanned by a window having a size434

of 4×4 = 16 cells. At each scanning position the per-435

centages, p1, . . . , pk, of the window’s area occupied by436

cells having classes 1, . . . , k, respectively are recorded437

and a window area is assigned a list of k tags (one for438

each class) representing those percentages. These tags439

are classified into one of three categories, 1 if the per-440

centage is below 1/4, 2 if it is between 1/4 and 1/2, and 3441

if it is above 1/2. Tallying all tags results in a histogram442

with 3×k bins (three bins for each class).443

For example, for a scene having a size of 16×16444

cells and k=4 classes (see Fig. 3C) the number of tags445

for decomposition level i = 2 is 16×4=64 (number of446

sub-windows×number of classes). These tags are his-447

togrammed into 12 bins (number of classes×number of448

tag categories). If, for example, the entire scene is occu-449

pied by only one class (say, red), eight bins are equal to450

0 and 4 bins (red-3, blue-1, green-1, and yellow-1) have451

16 tags each. In this method tags are the primitive fea-452

tures. Repeating the same procedure for remaining de-453

composition levels results in D−1 histograms each hav-454

ing 3×k bins. All these histograms can be concatenated455
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into a histogram of length equal to 3×k×(D−1). Fig. 3C456

shows schematically a construction of the decomposi-457

tion histogram for a scene of size 16×16 cells and k=4458

classes. The size of the scenes dictates the maximum459

level of decomposition D=4 and the histogram length460

equal to 36. The decomposition signature is designed to461

be effective for patterns of all levels of complexity, how-462

ever, we have not yet accumulated sufficient experience463

working with this signature to offer definitive advice on464

the types of datasets to which it can be best applied.465

3.2. Distance functions466

Distance, which assesses the degree of dissimilarity467

between two scenes, is the opposite of similarity. The468

input to all distance functions implemented in GeoPAT469

is a pair of normalized (the sum of all bins adds to470

1) signature histograms P and Q and the output is a471

real number assessing the dissimilarity (distance) be-472

tween those histograms. When the value of distance473

function is equal to zero identical histograms are in-474

dicated, and thus scenes have identical or very similar475

patterns, whereas large values of the distance function476

indicate very different histograms and scenes having477

significantly different patterns. Note that all histogram478

distance measures are heuristic and no single measure479

will work well with all signatures. Of over 40 possi-480

ble histogram distance measures (Cha, 2007) GeoPAT481

implements the three methods described below which482

work well with signatures described in the previous sub-483

section. All three measures have a range of possible484

values limited to an interval between 0 and 1.485

Jensen-Shannon divergence – This measure (Lin,486

1991) expresses the informational distance between two487

histograms P and Q by calculating a deviation between488

the Shannon entropy of the mixture of the two his-489

tograms (P+Q)/2 (the second term in eq.(1) below) and490

the mean of their individual entropies (the second term491

in eq.(1)). The value of the Jensen-Shannon divergence492

is given by the following formula,493

dJS D =

√√√ d∑
i=1

[ Pilog2Pi + Qilog2Qi

2
−

( Pi + Qi

2

)
log2

( Pi + Qi

2

)]
(1)

where d is the number of bins (the same for both his-494

tograms) and Pi and Qi are the values of ith bin in the495

two histograms. We have found Jensen-Shannon diver-496

gence works well (yields dissimilarity values in agree-497

ment with human visual perception) for comparison of498

land cover patterns as encapsulated by crossproduct sig-499

natures (Jasiewicz et al., 2013; Stepinski et al., 2014;500

Netzel and Stepinski, 2015).501

Wave Hedges – This measure is designed to work502

with co-occurrence signature histograms that tend to be503

dominated by bins corresponding to adjacent cells hav-504

ing the same class. The value of the Wave Hedges dis-505

tance is given by the following formula (Cha, 2007),506

dWH =

d∑
i=0

ei
|Pi − Qi|

max(Pi,Qi)
(2)

where d is the maximum number of possible bins and507

ei = 1 if max(Pi,Qi) > 0 or ei = 0 otherwise. In508

other words, only pattern features present in at least509

one of the two scenes contribute to the value of the510

distance. In Wave Hedges distance formula all present511

features contribute to the overall value of distance with512

the same weights regardless of feature abundance in513

the scenes. In the case of the co-occurrence his-514

togram (Fig. 3B) this means that composition-related515

features and configuration-related features contribute516

equally to the distance value despite the heavy dom-517

inance of composition-related features in histograms518

stemming from all realistic scenes. This makes the519

Wave Hedges distance particularly suitable for compar-520

ison of terrain scenes as encapsulated by co-occurrence521

signatures (Jasiewicz et al., 2014)522

Jaccard– This measure is an extension of the Jaccard523

similarity coefficient (Jaccard, 1908), originally devel-524

oped to assess a similarity between two sets, but used525

here for assessing the dissimilarity between two his-526

tograms. The value of the Jaccard distance is given by527

the following formula (Cha, 2007),528

dJ = 1 −

d∑
i=1

PiQi

d∑
i=1

P2
i +

d∑
i=1

Q2
i −

d∑
i=1

PiQi

(3)

We have found that the Jaccard distance works well for529

comparison of land cover patterns as encapsulated by530

decomposition signatures.531

4. Core modules532

The seven core modules in the GeoPAT toolbox pro-533

vide the infrastructure for pattern-based analysis of spa-534

tial datasets. There are two types of core modules: sig-535

nature extraction modules and geoprocessing modules.536

Fig. (4) illustrates different possible pipelines of data537

processing using these modules.538
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p.sim.distmatrix

p.sig.points

p.sig.polygons

p.sig.grid

p.sim.search

p.sim.compare

p.sim.segment

grid of
signatures

list of
signatures

input layers transformation signatures processing output products

(grid-of-scenes)

Figure 4: Different data processing pipelines possible using modules from the GeoPAT toolbox. Input consists of raster layers and output consists
of raster layers or text tables.

4.1. Signature extraction modules539

The input to all three signature extraction modules540

is a set of categorical rasters containing all information541

layers needed to construct scenes signatures. The out-542

put is a set of signatures; each module outputs these543

signatures in a different data structure depending on its544

definition of a scene or a set of scenes. Fig. 5 shows545

three possible scenarios for scene definition which are546

addressed by the three modules.547

p.sig.points. This module extracts signatures for a548

collection of individual scenes having a square geome-549

try (see Fig. 5A). The user provides the coordinates of550

the center of each scene (point file) and the size of the551

scene. The module outputs a list of scene-labeled sig-552

natures. Note that p.sig.points can be used to extract553

a signature for the entire region if needed. There are554

several typical uses for this module. Examples include555

generating a query scene to be compared with a grid-of-556

scenes for the search task, comparison of several scenes557

in a single raster (like in a comparison of different cities558

on the basis of their patterns of land cover classes), and559

comparison of two different co-registered rasters (like560

in comparison of a natural scene with a scene resulting561

from a computer simulation aimed at recreating a pat-562

tern observed in the natural scene).563

p.sig.polygons. This module extracts signatures for564

a collection of individual scenes having a polygonal ge-565

ometry (see Fig. 5B). The user provides as input a cate-566

gorical raster layer which defines the division of a re-567

gion into polygonal scenes and the module outputs a568

A B C

Figure 5: Methods of scene definition: A – scenes defined by points;
B – scenes defined by polygons; C – scenes defined by a grid.

list of polygon-labeled signatures. A typical use for569

p.sig.polygons is for comparing irregular scenes result-570

ing from a segmentation of the region (using the seg-571

mentation module p.sim.segment, see the next subsec-572

tion).573

p.sig.grid. This module extracts a grid-of-scenes (see574

Fig. 5C) – a grid of the same spatial extent as the region575

defined by the input data but having larger cells (s-cells).576

Each s-cell has only one attribute - a signature of the577

scene centered on it. The module outputs a header file578

containing the topology of the grid-of-scenes and a bi-579

nary file containing signatures ordered row by row. The580

grid-of-scenes is an input to three geoprocessing mod-581

ules: p.sim.search, p.sim.segment and p.sim.compare.582
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4.2. Geoprocessing modules583

The four geoprocessing modules use scene signa-584

tures and distance functions to perform four popu-585

lar analysis tasks including: comparison of individual586

scenes (p.sim.distmatrix), comparison between a single587

scene (a query) and grid-of-scenes (p.sim.search), com-588

parison between two grids-of-scenes (p.sim.compare),589

and a segmentation of a grid-of-scenes (p.sim.segment).590

Fig. (6) illustrates the tasks performed by these mod-591

ules.592

p.sim.distmatrix. This module computes a distance593

matrix between a collection of scenes. It uses signatures594

output by p.sig.points or p.sig.polygons modules and an595

appropriate distance function from the library. The re-596

sultant distance matrix is typically used as an input for597

scene clustering (Fig. 6A) which results in discovering598

structures in the data without guidance from an analyst.599

Clustering itself is not implemented in GeoPAT nor is it600

implemented directly in GRASS; we recommend using601

the hierarchical clustering algorithm implemented in R602

(R Core Team, 2013) as GRASS is designed to work603

together with R (Bivand, 2000). The distance matrix604

generated by p.sim.distmatrix is the only required input605

to the hierarchical clustering algorithm. An example of606

p.sim.distmatrix usage would be the clustering of a col-607

lection of cities on the basis of the patterns of land cover608

classes within their boundaries.609

p.sim.search. This module performs a query-by-610

pattern-similarity (QBPS). The input is a query scene611

(or a list of query scenes) output by p.sig.points or612

p.sig.polygons modules and a grid-of-scenes (database613

to be queried) output by the p.sig.grid module. The614

signature of each query and the signatures in a grid-615

of-scenes must have the same structure. The module616

compares query/queries with the database in a scene-617

by-scene fashion and outputs a layer(s) having the same618

topology as the grid-of-scenes but containing values of619

similarity between a query and each scene in the grid-620

of-scenes. The results of QBPS can be visualized as a621

similarity map (Fig. 6B).622

QBPS provides a knowledge discovery tool that is623

qualitatively different from retrieval of top-matches-to-624

a-query (Câmara et al., 1996; Datcu et al., 2002; Kop-625

erski et al., 2002; Aksoy et al., 2005; Barb and Shyu,626

2010) – a standard approach to searching for similar627

scenes. QBPS is a GIS tool inasmuch as it performs spa-628

tial processing resulting in a map that shows geograph-629

ical distribution of degree of similarity to the query630

scene. Such map provides much more information than631

a non-spatial list of top matches to a query. By utiliz-632

ing spatial organization it simultaneously shows simi-633

larity relations between the query and all scenes in the634

database. Thus it allows an analyst to concentrate on635

revealed geospatial phenomena rather than on similar-636

ity between specific scenes. QBPS has been used to637

query the NLCD 2006 dataset (Jasiewicz and Stepin-638

ski, 2013a; Stepinski et al., 2014) for similarity between639

land cover scenes and to query topography of the coun-640

try of Poland (Jasiewicz et al., 2014) for similarity be-641

tween landscapes. Note that QBPS can be used as an642

element of supervised classification of a region into dif-643

ferent pattern types such as, for example, urban struc-644

tures, landscape types, or physiographic units (see the645

next section).646

p.sim.compare. This module compares two grids-of-647

scenes in a scene-by-scene fashion. The grids must have648

the same topologies and the output of p.sim.compare is649

a raster layer having the same topology as the inputs650

but containing values of similarity between correspond-651

ing pairs of scenes (Fig. (6C)). This is equivalent to652

the GIS overlay function, but is performed on signature653

attributes. Applying p.sim.compare to two land cover654

datasets of the same region but pertaining to two differ-655

ent time steps enables pattern-based change detection656

(Netzel and Stepinski, 2015). Unlike traditional land657

cover change detection which tracks cell-by-cell transi-658

tions of land cover categories, pattern-based change de-659

tection assesses change in local patterns of land cover; it660

is especially useful for continental-scale or global-scale661

assessments of land cover change. Another application662

of p.sim.compare is for comparison of two layers cre-663

ated using different parameters. For example, the mod-664

ule can be used for comparison of two classifications665

of a DEM using the same method and the same tar-666

get landscape classes but different extraction parameters667

(Jasiewicz and Stepinski, 2013b). Such a comparison668

allows a user to see what landscape types are most sen-669

sitive to the values of free parameters in their mapping670

algorithm.671

p.sim.segment. This module segments a grid-of-672

scenes into regions of uniform patterns (Niesterowicz673

and Stepinski, 2013) (Fig. 6D) in the same fashion as674

traditional segmentation algorithms segment image (or675

other rasters) into segments of uniform color and tex-676

ture. The difference is that p.sim.segment segments a677

grid-of-scenes rather than an ordinary grid, and uses678

scene signature as attribute rather than color or image679

texture to decide how to delineate the segments. The680

module uses a variant of the region growing algorithm681

(Zucker, 1976; Câmara et al., 1996; Li and Narayanan,682

2004; Blaschke, 2010). It has two free parameters: a683

similarity threshold that defines the minimum similar-684

ity between two scenes to be treated as “similar” and,685

optionally, a minimum number of scenes to constitute a686
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Figure 6: Illustration of data processing, see text for details

separate segment.687

The segmentation provided by the p.sim.segment688

module is typically used as an intermediate step in re-689

gionalization of the dataset. The goal of regionalization690

is to generalize and thus simplify spatial representation691

of data so it is more meaningful and easier to analyze.692

Examples of regionalization include delineation of land-693

scape types (Niesterowicz and Stepinski, 2013) or de-694

lineation of physiographic units (Jasiewicz et al., 2014).695

Regionalization is achieved by clustering segments out-696

put by p.sim.segment into a number of distinct pattern697

type classes.698

5. Case study699

To demonstrate GeoPAT’s capabilities in application700

to a specific dataset we use a region extracted from701

the NLCD 2006 referred to as “Atlanta.” Atlanta cov-702

ers a region in the northern part of the U.S. state of703

Georgia (see Fig. 8A) that includes the city of Atlanta.704

The grid has a size of 11300 x 7500 cells and a res-705

olution of 30m/cell. It is a categorical grid with 16706

land cover classes. The data can be downloaded from707

http://sil.uc.edu. NLCD is the result of classification708

of Landsat images, so this example pertains to image709

data. Working with the NLCD avoids performing the710

pre-processing step of pixel-based classification, which711

is not a part of GeoPAT toolbox.712

The purpose of this case study is to perform unsu-713

pervised and supervised regionalizations of the Atlanta714

site into landscape types (characteristic patterns of land715

cover) using GeoPAT modules and R. Two different716

modes of machine learning (unsupervised and super-717

vised) are demonstrated to show the range of tasks that718
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can be achieved using GeoPAT. The schema of the two719

procedures are shown in Fig. 7. These procedures can720

be run as a single routine due to the full integration be-721

tween GRASS 7 and R (Bivand et al., 2008). These722

routines are available as supplementary material to this723

paper (http://sil.uc.edu). Based on our earlier experi-724

ence in working with the NLCD (Jasiewicz and Stepin-725

ski, 2013a; Stepinski et al., 2014; Netzel and Stepin-726

ski, 2015) we use the crossproduct signature for scene727

representation and the Jensen-Shannon divergence as a728

distance function to measure dissimilarity between the729

scenes. The first step in both procedures is to gener-730

ate the grid-of-scenes using the p.sig.grid module. We731

have selected the grid-of-scenes to have a s-cell equal to732

900m (30 times the size of cell in the Atlanta grid) and733

we define scenes as square regions having the size of 4.5734

km×4.5 km. Thus, the scenes overlap significantly.735

grid of
scenes segmentation layer  of

segments
layer of

landscape types
(�nal map)

similarity
measures library

list of 
segment

signatures
distance matrix

calculations

similarity
measures library SC

EN
E 

CL
U

ST
ER

IN
G

(o
ut

si
de

 G
RA

SS
, i

n 
R)

reclassi�cation

vector

p.sim.segment
r.reclass

p.
sig

.g
rid

p.sim.polygons p.sim.distmatrix

A

B
outliers removal

signatures of
N scene samples

similarity layers
calculations N similarity layers

grid of
scenes

similarity
measures library

compilation
vector

p.sim.search

p.
sig

.g
rid

p.
sig

.p
oi

nt
s

r.series (GRASS)
layer of

landscape types
(�nal map)

Figure 7: Schemes of processing pipelines for case study calculations:
A) unsupervised regionalization; B) supervised regionalization

5.1. Unsupervised regionalization736

We start by running the p.sim.segment module with737

the following parameters: similarity threshold=0.75,738

minimum number of scenes=10. This yielded 434 indi-739

vidual segments. Signatures of the segments were cal-740

culated using the p.sim.polygons module. Using these741

signatures and the Jensen-Shannon divergence we clus-742

ter the 434 segments into seven “landscape types” using743

hierarchical clustering algorithm with ”Ward” linkage744

(available in R “stats” package). The choice of a num-745

ber of clusters is arbitrary as is always the case in hi-746

erarchical clustering. The result is a map of landscape747

types in the Atlanta site (Fig. 8B). Note that these land-748

scape types emerged from the data and we assign labels749

to them (see caption to Fig. 8) only a posteriori, after750

reviewing the results of hierarchical clustering.751

In principle, an unsupervised classification could752

be performed without the intermediate segmentation753

step. The signatures calculated by the p.sig.grid mod-754

ule could be clustered to yield landscape types, however755

this would involve clustering over 90,000 scenes and the756

results would exhibit salt and pepper noise. The proce-757

dure demonstrated here employs the concept of object-758

based analysis – first segment then classify but it is the759

grid-of-scenes rather than an image which is segmented.760

5.2. Supervised regionalization761

To begin, we selected seven individual scenes762

(shown as white squares in Fig. 8C) as landscape type763

archetypes or samples of the seven landscape types we764

have chosen for mapping; 1 – urban, 2 – wet crop-765

lands, 3 – pasture-dominated, 4 – deciduous forest-766

dominated, 5 – evergreen forest-dominated, 6 – wet-767

lands and surroundings, 7 – waters and surroundings.768

Signatures for the seven sample scenes were calculated769

using the r.sig.points module. These signatures were770

used as queries over the Atlanta grid-of-scenes using771

the p.sim.search module resulting in seven similarity772

maps, one for each query. The maps were overlaid (us-773

ing GRASS capabilities) and each s-cell was assigned a774

landscape type label corresponding to the largest value775

of similarity resulting in a single map of landscape types776

(Fig. 8D).777

It is interesting to observe similarities and differences778

between the two maps. Differences are expected be-779

cause the two maps were obtained following very dif-780

ferent principles. The unsupervised map on Fig. 8B re-781

flects the natural grouping of landscapes subject to a re-782

striction on the total number (in our case – seven) of783

the groups. The supervised map on Fig. 8D reflects the784

preferences of an analyst who has selected a priori spe-785

cific landscape types to be mapped. The similarities be-786

tween the two maps stem from the fact that both of them787

reflects the same physical reality.788

The two processing schemes demonstrated here789

closely resemble standard schemes for unsupervised790

and supervised image classifications. This is intentional791

as GeoPAT is designed to work like a standard GIS sys-792

tem but with scenes rather than pixels. However, the793

output of GeoPAT (see, for example, Figs. 8B and D)794

is fundamentally different from the output of an image795

classification algorithm as it yields pattern-based gener-796

alization of pixel-based classification.797

The unsupervised example illustrates the concept of798

generalization that has been previously applied (using799

different methods) to land cover datasets in the context800
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Figure 8: Results of the case study. Boundaries of delineated landscape types obtained using unsupervised (A) and supervised (C) regionalization
procedures superimposed on the NLCD map (see http://www.mrlc.gov/ for the land cover legend). Regionalization maps resulting from unsuper-
vised (B) and supervised (D) classification, respectively. Classes of unsupervised regionalization are: 1 – urban, 2 – suburban, 3 – pasture-forest
mixture, 4 – wet croplands, 5 – pasture-dominated, 6 – forests dominated, and 7 – waters and surroundings. Classes of supervised classification
are: 1 – urban, 2 – wet croplands 3 – pasture-dominated, 4 – deciduous forest-dominated, 5 – evergreen forest-dominated, 6 – wetlands and
surroundings, and 7 – waters and surroundings. Scene samples utilized in supervised approach are marked by white squares.

of landscape ecology (Long et al., 2010; Cardille and801

Lambois, 2009) and the supervised example illustrates a802

generalization concept that has been previously applied803

(using different methods) to RS images in the context of804

mapping urban landscapes (Moller-Jensen et al., 2005;805

Vatsavai, 2013a; Graesser et al., 2012). With GeoPAT806

these kinds of generalizations can be performed with807

relative ease and on much larger datasets by taking ad-808

vantage of GRASS’ ability to handle very large datasets.809

6. Performance810

GeoPAT has been optimized to work efficiently with811

big data where it is most effective as a knowledge dis-812

covery tool. It can be applied to giga-cell rasters when813

running on either servers or workstations. Table 1814

lists execution times for GeoPAT modules as applied to815

several large datasets. This gives a rough idea about816

GeoPAT’s level of performance. All calculations were817

run on a double-CPU XEON machine (8 cores each)818

with 20 GB of RAM running Linux. Three datasets819

were used: (1) The POLAND dataset (24, 000× 27, 000820

cells) is a 10-classes map of landform elements cal-821

culated from a 30m/cell DEM (Jasiewicz and Stepin-822

ski, 2013b); (2) The CHINA dataset ( 84, 000 × 64, 000823

cells) is a 10-class map of landform elements calculated824

from a 90m/cell DEM (SRTM); (3) The USA dataset825

(164, 000 × 104, 000 cells) is a 16-class, 30m/cell map826

of land cover/land use (NLCD 2006) covering the entire827

conterminous United States.828

Table 1 is divided into two parts, part A pertains to829

the performance of the signature extraction modules and830

part B pertains to the performance of the geoprocessing831

modules. In general, the signature extraction modules832

are significantly more computationally expensive than833

geoprocessing modules. However, in a typical appli-834

cation signature extraction needs to be performed only835

once, whereas geoprocessing computation may require836

multiple runs in order to get a satisfactory result.837

Note that the p.sim.search module is fast enough to838

enable real-time search. Indeed, this module provides839

a computational engine for our two GeoWeb pattern840
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module input output processing time
A. Signature extraction modules

p.sig.points with co-occurrence
function

single scene 300 × 300 cells
with 10 categories

single signature with 55 bins 0s 73ms

p.sig.grid with co-occurrence
function

POLAND 800 × 900 grid-of-scenes 2h 26m

p.sig.grid with co-occurrence
function

CHINA 1680 × 1280 grid-of-scenes 20h 39m

p.sig.grid with crossproduct
function parallelized with 10
threats

USA 1640 × 1040 grid-of-scenes 4h 46m

B. Geoprocessing modules
p.sim.distmatrix with Wave-
Hedges function

1084 histograms with 136
bins each

1084× 1084 distance matrix 48s

p.sim.search, 55-bins his-
tograms, Wave-Hedges function

64 queries, POLAND grid-
of-scenes

64 800×900 similarity lay-
ers

5s 33ms

p.sim.search, 192-bins his-
tograms, Jensen-Shannon
function

1 query, USA grid-of-scenes one 1640 × 1040 similarity
layer

6s 11ms

p.sim.compare, 55-bins his-
tograms, Wave-Hedges function

two POLAND grids-of-
scenes

one 800 × 900 similarity
layer

0s 97ms

p.sim.segment, 55-bins his-
tograms, Wave-Hedges function

one POLAND grid-of-
scenes

one 800× 900 layer contain-
ing segments

1s 28ms

Table 1: Examples of computation times for different modules of GeoPAT and using different datasets.

search applications, LandEx-USA – which enables dis-841

covery of similar land cover patterns over the extent of842

the United States and TerraEx-PL – which enables dis-843

covery of similar landscapes over the extent of the coun-844

try of Poland. These online applications are available at845

http://sil.uc.edu/. The real-time response to a query in846

these applications is achieved by pre-calculating grids-847

of-scenes and storing them in the RAM. Once a query848

is submitted by a user the application runs p.sim.search849

and returns the generated similarity map.850

7. Discussion and conclusions851

GeoPAT is a toolbox which implements our method852

(Jasiewicz and Stepinski, 2013b; Stepinski et al., 2014;853

Jasiewicz et al., 2014; Netzel and Stepinski, 2015) for854

pattern-based information retrieval from images and855

other rasters. The recent interest in such methods stems856

from the need to consider spatial patches larger than857

a pixel to adequately reflect local content. To the858

best of our knowledge, the only current methodological859

(but not software) alternative to GeoPAT is the Com-860

plex Object-Based Image Analysis (COBIA) (Vatsavai,861

2013a,b) which relies on the MIL concept. At the con-862

ceptual level GeoPAT and COBIA are similar inasmuch863

as both use scenes, both describe a scene as a Probabil-864

ity Distribution Function (PDF) of image features, and865

both use measures of similarity between PDFs to asses a866

degree of similarity between the scenes. The differences867

are in an the implementation of this concepts. COBIA868

works directly with images and assumes that the PDF of869

image features can be modeled by a multi-variate Gaus-870

sian. GeoPAT works with previously classified images871

and models PDFs as histograms. Both of these meth-872

ods differ from earlier approaches (Moller-Jensen et al.873

(2005) or Lucieer and Stein (2005)) to improve clas-874

sification and segmentation of images by incorporating875

texture descriptors as additional features in pixel-based876

(single-instance learning) algorithms.877

The decision to design GeoPAT to operate on cat-878

egorical rasters was dictated by two considerations:879

(a) the flexibility of input data, so different modalities880

of raster data could be analyzed by GeoPAT once881

classified, and (b) the use of categorical rasters in-882

creases the performance of an algorithm and make883

it easier to work with large datasets. Note that884

many large datasets of interest are already avail-885
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able in the categorized (land cover) form. These886

include 30m U.S.-wide NLCD, 30m global GLC30887

(http://www.globallandcover.com/), 300m global888

GlobCover (http://due.esrin.esa.int/globcover/), and889

100m Europe-wide CORINE. In addition, topographic890

datasets (DEMs) can be categorized with relative ease891

by using robust techniques, such as the geomorphons892

method (Jasiewicz and Stepinski, 2013b) for which an893

open source code as well as an online application are894

available at http://sil.uc.edu/. Additionally, RGB VHR895

images can be categorized by clustering colors with896

Euclidean distance in CIE-Lab color space (Rubner897

et al., 2000).898

Given a dataset, what combination of signature/dis-899

tance function are most appropriate? There is no quan-900

titative means to assist in answering this question di-901

rectly. Each combination is based on different set of902

heuristics and will yield different values of similarities903

for the same pairs of scenes. These values can be com-904

pared (Stepinski and Cohen, 2014) by using their corre-905

sponding percentiles (calculated from the empirical cu-906

mulative distribution functions of the sets of similarities907

between all scenes in the dataset), but it is not possi-908

ble to determine objectively which similarity value is909

“better” as this invokes subjective human perception of910

similarity between spatial patterns.911

However, in applications of GeoPAT to classification912

tasks, the utility of a particular signature/distance func-913

tion combination can be assessed indirectly by assessing914

quality of the classification. When using the GeoPAT915

for supervised learning, the quality of a classifier can916

be assessed by applying the classifier to a test set of917

pre-labeled scenes and calculating the standard metrics918

of performance. The results will depend on the selec-919

tion of a particular signature/distance function combi-920

nation. Note that when a region under consideration921

has clearly visible divisions between different pattern922

types, like in the case of the DEM shown in Fig. 1 or923

the image used by Vatsavai (2013a), all possible classi-924

fiers will perform very well as the problem presents lit-925

tle challenge to an algorithm. On the other hand, regions926

on which an analyst would have difficulty in delineating927

the boundaries between different types of patterns, like928

in the case of Atlanta region, present a challenge. First,929

it is difficult-to-impossible to manually delineate differ-930

ent pattern types in such regions (to construct a test set),931

second, different classifiers (different combinations of932

signature/similarity function) will yield different results933

without an objective means to assess their quality due to934

lack of a reliable test set. However, in our opinion, such935

“difficult” regions are where GeoPAT is most useful as it936

retrieves information which could be difficult to retrieve937

by any other means. To make this point clearer consider938

the Atlanta region as shown in the middle of Fig. 6. It939

would be very difficult for an analyst to manually delin-940

eate pattern types in this region and no two manual de-941

lineations would be the same, but GeoPAT delineations942

(Fig. 8) are objective, repeatable, and they make perfect943

sense to an analyst once the computed boundaries are944

superimposed on the land cover map (Fig. 8 A and C).945

Finally, GeoPAT is an actively developed software946

and we expect users to contribute to it by adding to947

the shared library of functions. GeoPAT is available for948

download from http://sil.uc.edu/. Currently, it has been949

tested on and made available for the Linux operating950

system; it requires the development version of GRASS951

7.952
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