
Comparison of different implementations of a raster map1

calculator2

Netzel P.a,∗, Slopek J.b3

aUniversity of Agriculture, al. 29 Listopada 35, Krakow, Poland4

bUniversity of Wroclaw, pl. Uniwersytecki 1, Wroclaw, Poland5

6

ART ICLE INFO

Keywords:
large rasters
map calculator
benchmark
OpenSource software

7 ABSTRACT8
9

In the paper, we review selected existing solutions of raster map calculators and10

propose a new approach for map calculation tools. The main criteria to select11

raster maps calculators was the ability to run them in batch mode and to use12

them in external scripts. Such a working method is common in the processing and13

modeling of massive datasets. We compared the following solutions: r.mapcalc14

from GRASS GIS, Grid Calculator module in SAGA, gdal_calc.py from GDAL15

library, and ’calc’ function from R raster package. Moreover, we propose another16

solution – plMapcalc. The solution has new features, such as multiple outputs,17

multi-pass processing, and a memory buffer to store temporary values. All raster18

calculators were compared according to their processing efficiency and precision.19

Two datasets of different sizes were used in the testing procedure, which started20

with GeoTIFF input files and produced GeoTIFF resultant files.21

The results of the test show that the precision of the calculations is comparable.22

We also compared the processing times of all the calculators using a ranking pro-23

cedure. The new solution for introducing extra functionalities is the best ranked24

raster map calculator.25

26

1. Introduction27

In raster systems, operations involving algebra layers are extremely important. Using arithmetic opera-28

tions, it is possible to define the calculation of vegetation indices, implement environmental regression, and29

calculate the values of statistical models.30

In the age of Big Data, the amount of input raster data has grown significantly. It is necessary to perform31

calculations on raster layers with sizes of 100,000 x 100,000 cells and larger. Many raster data applications32

require the combination of information stored in multiple raster layers or even the use of data stored in33

different formats to run complex tasks (Silva-Coira, Parama, Ladra, Lopez and Gutierrez, 2020). This leads34

to a situation in which either GIS workstations are considered insufficient and calculations are transferred to35

the cloud, to computing clusters, or the time to receive final results becomes very long, and calculations take36

hours. Parallel processing can allow faster calculations (Steinbach and Hemmerling, 2012; Yildirim, Watson,37

Tarboton and Wallace, 2015). Its use in GIS software dates back to 30 years (Guan and Clarke, 2010; Guan,38

Zeng, Gong and Yun, 2014). Some modern systems successfully use parallel processing, providing analysis39

results in a short time. Apart from parallel processing, research has also been conducted on alternate ways40

of reading and writing raster data (Rosario, Bordawekar and Choudhary, 1993; Qin, Zhan and Zhu, 2014),41

as input/output operations constitute another bottleneck in the processing of spatial data (Yildirim et al.,42

2015).43

In recent years, the efficiency of geospatial data processing programs written in Python, or R and Python44

(Verbeurgt, Stal, De Sloover, Deruyter and De Wulf, 2020; Strimas-Mackey, 2020) have been analyzed. The45

interest in these topics is related to the need to process the rapidly growing amount of satellite remote46

The contribution of authors: Pawel Netzel — conceptualization of this study, methodology, software, calculations; Jacek
Slopek — tests and calculations, data curation, writing – original draft preparation

∗Corresponding author
pawel.netzel@urk.edu.pl (N. P.); jacek.slopek@uwr.edu.pl (S. J.)
www.pawel.netzel.pl (N. P.)

orcid(s): 0000-0003-4151-4908 (N. P.); 0000-0002-7194-3802 (S. J.)

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 1 of 15

www.pawel.netzel.pl

Comparison of different implementations of a raster map calculator

Figure 1: Basic calculation flow implemented in a raster calculator

sensing and aerial data. In this context, the biophysical spectral indices are also emphasized as a source of47

knowledge on the changes taking place in the natural environment (Achhab, Raissouni, Azyat, Chahboun48

and Lahraoua, 2010; Liu, Feld, Xue, Garcke, Soddemann and Pan, 2016; Saribekyan, 2013).49

This study provides an overview of selected raster calculators of modern, open GIS systems and indepen-50

dent programs for raster map algebra As part of the comparative analysis, the currently used GIS systems51

and programs that are in a position to be ready to work with big data were identified. This study also52

presents a new solution in the field of raster calculators that allows complex calculations with large amounts53

of spatial data to be performed efficiently. This solution introduces new features to extend the range prob-54

lems that can be solved with raster calculators (Netzel, 2020). The need for such software arises during the55

processing of large data files. When a user has to go beyond simple calculations completed by standalone56

raster calculators, the data needs to be imported into a GIS database to use GIS system functionalities,57

or a dedicated software needs to be developed. Moreover, such dedicated software must be optimized for58

processing time and memory usage. A convenient tool that can rapidly perform complex calculations with59

limited memory resources is therefore necessary. plMapcalc largely solves these problems.60

All tested software is freely available under open licenses.61

Raster map calculators were tested using local functions (Tomlin, 1990), i.e. those in which the input62

cells occupy the same position in the layer. The formulas used included basic arithmetic operations like63

addition, multiplication, division, subtraction, and simple mathematical functions, that can be implemented64

in any GIS system.65

This paper has two main aims. The first is to introduce the new raster calculator that satisfies three66

requirements:67

• it is easy to use in scripts and works with commonly used data formats (no import/export operations68

required);69

• it has the ability to make complex calculations;70

• it is fast.71

The second aim is to compare five different map calculators using 2 datasets: medium size (ca. 108 raster72

cells) and large size (ca. 1010 raster cells). The testing procedure took a GeoTIFF raster files as an input73

and created an output GeoTIFF raster file(s). If an import or an export was necessary, the time of such74

procedures was taken into account. The new proposed solution – plMapcalc – is included in the raster map75

calculator’s comparison procedure.76

2. Raster map calculators77

In general, currently used raster map calculators work based on a standard scheme:

new_raster_layer = f(input_raster1, input_raster2, . . .)

where f() is a function, equation, or formula that computes the cell values of the new layer.78

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 2 of 15

Comparison of different implementations of a raster map calculator

The flow of the calculation process is illustrated in Figure 1. The calculator takes one or more input79

layers, applies a formula and stores the result in the output layer. In some systems, the user can run such80

processes in parallel.81

It is necessary to use dedicated modules or functions to implement more complex algorithms. If they are82

missing, scripts need to be written. Moreover, existing solutions usually limit the computational possibilities83

for storing the result in only one newly created layer.84

In this paper, the authors consider raster calculators that allow the user to work in batch mode and85

perform calculations using external scripts. This selection was dictated by the fact that this method is used86

most often when processing large data sets. The selected calculators can work on Windows or Linux.87

The list of tested raster map calculators is as follows:88

• plMapcalc - a new standalone raster calculator based on Tiny C Compiler (TCC) and GDAL libraries.89

• gdal_calc.py - a raster calculator included in the GDAL toolset;90

• r.mapcalc - a raster calculator from GRASS GIS;91

• SAGA - a raster calculator built-in SAGA GIS software;92

• R raster calc - a raster calculator from raster library in the R software;93

2.1. plMapcalc (proposed solution)94

The proposed solution provides new functionalities for map algebra calculus. The idea of the map95

calculator extension was modeled on the capabilities of the ’awk’ text file processing program. In ’awk’, it96

is possible to define the BEGIN script that should be run before scanning a file, the END script that can97

be used to summarize the results of file processing, and variables (and arrays) that are accessible during98

processing. It is also possible to restart the processing of a file.99

plMapcalc uses a similar approach to raster data processing. Owing to such extensions and new features,100

plMapcalc can go beyond standard map one-pass and one-output formula calculations and enables a user101

to solve a wider range of problems (Netzel, 2020). The main idea behind this solution was to create a tool102

for issues more complicated than those having four arithmetic operations and less complex than spatial103

algorithms (such as spatial segmentation). Moreover, the new calculator should be fast enough to deal with104

large input files (1010 or more raster cells) in a reasonable time (see Table 1).105

The properties of the proposed solution are as follows:106

• entered calculation scripts are compiled into native machine code before execution,107

• one or more result maps are generated in one run;108

• calculations are conducted using input maps without the need to create the output layer;109

• to propagate results of calculations from one cell to another, the formula can use a memory buffer with a110

user-defined size;111

• to store partial results between program calls, the memory buffer can be written to or loaded from a text112

file;113

• the user can enter three scripts: executed before starting the calculations, performed for each of the raster114

cells, and performed after the calculations are finished115

• it is possible to restart layer calculations at any moment, allowing input layers to be scanned multiple116

times.117

Owing to the above features it is possible to do calculations from simple raster map algebra or reclassifi-118

cation to building statistical models, and solving differential equations. plMapcalc is written in C language.119

It can be built with GNU C Compiler or Visual Studio Express. The parallel processing in plMapcalc is done120

with the help of OpenMP library version 5. Formulas for calculations are written in a language compatible121

with the ANSI C language. plMapcalc compiles these formulas into machine code using the TCC compiler122

library – Tiny C Compiler (Poletto, Hsieh, Engler and Kaashoek, 1999). plMapcalc provides an environment123

to run such compiled script code, feeds inputs, and stores outputs in files. It runs in command line mode124

and lacks a graphical user interface.125

TCC is a swift, portable, and small C compiler. The TCC compiler is ANSI C compliant and can work126

as a compiler, C code script interpreter, and a C code compilation library. The last ability of TCC is used127

in plMapcalc. plMapcalc compiles ANSI C macros into machine code on-the-fly and runs it for consecutive128

cells.129

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 3 of 15

Comparison of different implementations of a raster map calculator

Figure 2: plMapcalc calculator’s internal processing

2.1.1. Internal architecture of plMapcalc130

plMapcalc can work with extensive data in a reasonable time. To limit memory requirements, plMapcalc131

processes the input data row-by-row, which allows the storage of only a small amount of the input file132

in the memory. As plMapcalc uses numbers in double-precision floating format to store the data, the133

memory footprint of each data file in bytes is eight times the number of columns. If plMapcalc runs with134

n input/output layers, and each layer is w cells wide and h cells high, then the memory requirement is135

O(w ∗ n+ n ∗ c), where c is the size of control structures necessary to open the GDAL dataset.136

plMapcalc speeds up the processing by:137

• compiling processing scripts to native machine code,138

• running the code in parallel with OpenMP library.139

Figure 2 illustrates internal processing implemented in plMapcalc.140

The scripts entered by a user are compiled to a binary processor code. The library of Tiny C Compiler141

provides the ability to create binary machine code at the runtime. Internally, the scripts become bodies of142

functions that will be called at the processing start, for each cell, and at the end of the processing.143

The primary process can be run in parallel. This is an option, and its usability depends on the hardware:144

the number of physical threads of the CPU and hard drive throughput. The first step of parallel processing145

is performed on the disk’s read/write procedure level. Reading and writing of each file and row processing146

are done in parallel. The OpenMP tasks perform reading a row, writing a row, or calculating the current147

row. Such an approach requires the number of threads to be equal to or greater than the number of input148

and output files plus one extra thread for calculation.149

The second step of parallelization is done during row processing. This step is conditional. It is used in150

the situation when the user does not declare a memory buffer to propagate calculation results from one cell151

to another. This buffer extends a range of algorithms that can be implemented in plMapcalc scripts, but it152

is a bottleneck in process parallelization.153

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 4 of 15

Comparison of different implementations of a raster map calculator

Figure 3: Proposed method of processing in the plMapcalc raster layer calculator

2.1.2. Workflow of plMapcalc154

From a user point of view, the way plMapcalc functions is illustrated in Figure 3. The program accepts155

three scripts:156

1. a STARTUP script, which is executed before starting data reading (upper yellow box);157

2. a CELL script that is executed sequentially for each cell in the calculation region (red box);158

3. an END script that is called after reading and calculating the input data (lower yellow box).159

In the CELL script, the user can refer to input values through the IN array, to the output layers through160

the OUT array, and to the declared shared memory buffer through the MEM array. As OUT is an array,161

the user can define multiple output layers. That reduces the need to read input layers numerous times162

to calculate a set of resultant layers. plMapcalc allows the calculation of, for example, several vegetation163

indices at once. Such an approach is more efficient than iterating formulas that call on successive indices.164

plMapcalc has an implemented memory buffer. This buffer is available in the calculation of each raster165

cell, and the user defines its size. The memory buffer enables storing, counting, summing, etc., values from166

raster cells or interim results. The buffer can be saved to a text file after the computation ends. In this167

way, the final results are stored even though the user does not specify an output raster layer. In such a case,168

plMapcalc works as a tool for calculating layer statistics, regression models, etc. Moreover, the memory169

buffer can be used for a quick reclassification of the input data.170

When plMapcalc finishes the processing of the entire input, plMapcalc calls the END script. In this171

script, the user can do additional calculations based on the results stored in the memory buffer. If the172

algorithm requires it, the user can retrigger the calculations of input data from the beginning. During the173

next data scans, the BEGIN script is omitted.174

Both the input data and the memory buffer are represented in the scripts in double format.175

A set of examples that shows how to use plMapcalc is available on plMapcalc’s web page (http://176

plmapcalc.netzel.pl). These examples are ordered from simple map algebra to complex classification177

problem.178

2.1.3. Example of plMapcalc usage179

To illustrate how plMapcalc can be applied, we show a simple example. The aim of the calculations is180

to nomalize air temperature to the range from 0 to 1. The input layeras are following t01.tif, t02.tif, ... ,181

t12.tif. Each layer contains monthly averages of the air temperature. plMapcalc calculates global minimum182

and maximum air temperature. Next, it recalculates temperatures. The ouput consists of a set of layers.183

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 5 of 15

http://plmapcalc.netzel.pl
http://plmapcalc.netzel.pl
http://plmapcalc.netzel.pl

Comparison of different implementations of a raster map calculator

The following macros do the calculations described above.184

The BEGIN macro - file "init.mc":185

// the memory cells MEM[0] and MEM[1] will contain minimum and186
// maximum temperature respectively187
MEM[0] = 9999; //initial value for minimum188
MEM[1] = -9999 //initial value for maximum189

The CELL macro - file "calc.mc":190

int i;191
// checking iteration number192
if(ITERATION()==1) {193

// the first data scan194
// reading the data from input layers195
for(i=0; i<INPNUM; i++) {196

// IN[i] contains value of i-th input layer197
// looking for global minimum198
if(IN[i]<MEM[0]) MEM[0] = IN[i];199
// looking for global maximum200
if(IN[i]>MEM[1]) MEM[1] = IN[i];201

}202
} else {203

// the second data scan204
// calculating205
for(i=0; i<INPNUM; i++) {206

// OUT[i] represens the cell of i-th output layer207
OUT[i]=(IN[i]-MEM[0])*MEM[1];208

}209
}210

The END macro - file "print.mc":211

if(ITERATION()==1) {212
//the first data scan213
// printing minimum and maximum214
printf("Global minimum: %.2lf\n", MEM[0]);215
printf("Global maximum: %.2lf\n", MEM[1]);216
// calculate the scaling factor217
MEM[1]=1/(MEM[1]-MEM[0]);218
// calling the restart of the data scanning219
RESTART();220

}221

plMapcalc should be run with following parameters to do the calculations:222

plMapcalc --memory=2223
-i t01.tif -i t02.tif -i t03.tif -i t04.tif -i t05.tif224
-i t06.tif -i t07.tif -i t08.tif -i t09.tif -i t10.tif225
-i t11.tif -i t12.tif226
-o n01.tif -o n02.tif -o n03.tif -o n04.tif -o n05.tif227
-o n06.tif -o n07.tif -o n08.tif -o n09.tif -o n10.tif228
-o n11.tif -o n12.tif229

--program-begin=init.mc230
--program=calc.mc231
--program-end=print.mc232
--threads=6233

The parameter memory creates MEM array with two cells. At the beginning MEM array contains234

zeroes. The set of i parameters defines input layers. The IN array contains values from the input layers. In235

a similar way, the set of o parameters defines output layers. In the example, the output data will be stored236

in the default format. The user can define data type, no-data value, and compression level (see plMapcalc237

manual). The parameters with program prefix specify script files. The last parameter – threads determines238

the number of threads that will be used by plMapcalc.239

2.2. GDAL (gdal_calc.py)240

The calculator included in the GDAL library (Warmerdam, 2008) (which is a widely used open-source241

tool for manipulating spatial data) is gdal_calc.py. This tool is written in the Python language and is242

optimized for matrix computation (n-dimensional array objects) of the NumPy library, on which it depends.243

Thanks to this dependency, it has the speed of the NumPy library, which is written in C. gdal_calc.py reads244

input data and optimizes the calculation by trying to naturally divide data into blocks. gdal_calc.py can245

use data selection criteria to limit calculations and process the data that satisfies the given conditions.246

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 6 of 15

Comparison of different implementations of a raster map calculator

2.3. GRASS (r.mapcalc)247

r.mapcalc is a map algebra calculator that is part of GRASS (Geographical Resources Analysis Support248

System) software (Neteler and Mitasova, 2008). GRASS is one of the oldest Open Source GIS solutions.249

r.mapcalc enables the calculation of raster layers stored either in the internal spatial database of the GRASS250

system or the external raster layer made available through the GDAL library (and r.external tool). The251

external file (layer) must first be registered in the internal GRASS database. r.mapcalc provides a set of252

mathematical functions, logical operators, enables the definition of temporary variables, and allows multiple253

output layers to be created in one run.254

It also allows operations in the surroundings - neighbors of the raster cell. A built-in C-based interpreter255

interprets the entered calculation formula. Moreover, r.mapcalc can work with multiple inputs and creates256

more than one output simultaneously (by using grouping and piping functions). According to r.mapcalc257

developers, it can accelerate calculations.258

2.4. SAGA (Grid Calculator)259

SAGA (Conrad, Bechtel, Bock, Dietrich, Fischer, Gerlitz, Wehberg, Wichmann and Böhner, 2015) pro-260

vides a module library called Calculus for performing raster calculations. This library includes a Grid261

Calculator that allows a user to generate a new raster in the internal SAGA (grid) format. In the calcula-262

tions, the user can use the functions implemented in the module and applies them to the grid files imported263

into the system. The Grid Calculator allows calculations with on-the-fly resampling (four interpolation types264

have been built for this purpose). The calculator saves output grids with nine data types (from Byte to265

Double Floating Point Precision). The use of SAGA saga_cmd - the SAGA frontend that uses the command266

line to access modules - saga_cmd - requires additional steps to be taken, such as data registration in the267

internal SAGA structure, and export to an external format (e.g. GeoTiff). SAGA is coded in C++ and268

uses OpenMP parallel processing library.269

2.5. R raster (calc from raster library)270

In the R system, the library ’raster’ is used to perform calculations on spatial raster data. The library271

provides tools for performing calculations (function calc), preprocessing, and exporting calculation results to272

external files (function writeRaster). The raster library offers a class of R objects based on external spatial273

files. The system recognizes valid data sources among supported formats (including GeoTiff files). Such274

objects can be combined using the stack function into the RasterStack object, grouping files of the same275

resolution and size. The created RasterStack object can be converted to a multilayer raster RasterBrick276

object to accelerate calculations.277

Moreover, the ’raster’ library, with the help of ’clusterR’ library, can accelerate calculations performed278

using the ’calc’ function with the use of multiple processor cores.279

3. Datasets and calculation procedure280

Two data sets were selected for the calculations and performance tests of the raster calculators. The first281

is the scene recorded by the Sentinel-2B satellite. It is a relatively small dataset (120 million cells). The282

second set is an orthophoto map in CIR (Color Infrared, a combination of R, G, and NIR bands), created283

based on aerial photographs. This set was composed of approximately 5 billion raster cells with stored values284

(non-null values).285

3.1. Sentinel-2B data286

Four bands of the scene recorded by the Sentinel-2B satellite over the territory of Poland, covering over287

12000km2, were selected for testing. The scene selected for the tests has a spatial extent from 17o48′E to288

19o27′E and from 50o25′N to 51o24′N . The test data consisted of four bands with a resolution of 10 m:289

Band 4 (664.9 nm, red), band 8 (832.9 nm, NIR), band 3 (559 nm, green), and band 5 (703.8 nm, Red290

Edge). The scene size for the recorded bands with a 10 m resolution consists of 10980 x 10980 (120 560291

400) cells. The test scene was an L2A level product. The data used for the calculations were recorded in292

the UTM zone 33N geodetic projection (EPSG: 32633).293

The test scene files were converted from the JPEG2000 format (as provided by the Copernicus Open294

Access Hub) to the non-compressed GeoTIFF format.295

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 7 of 15

Comparison of different implementations of a raster map calculator

Figure 4: Datasets used for testing: A – Sentinel-2B scene, B – orthophoto map, Milicz forest district

The RGB composition of the scene selected for testing is shown in Figure 4 A.296

3.2. Orthophoto map297

The source aerial images for the orthophoto map were acquired over the Milicz forest district (Poland)298

(Figure 4 B) with an area of 181.94 km2.299

The digital orthophoto map was created by combining aerial photos taken with the Z/I DMC-II 230 aerial300

camera. The resulting image has a spatial resolution of 0.2 m per pixel and is a CIR composition containing301

the NIR band (670-910 nm), red band (570-730 nm), and green band (470-620 nm). The individual bands302

provided information in 8 bits per pixel (values 0-255). Image data was compressed using the JPEG method.303

The orthophoto map is a mosaic composed of 63 scenes covering rectangular areas of approximately304

5km2 in size. As a whole, the selected set of connected fragments has dimensions of 132680 x 115000 pixels305

(approx. 15.2 billion cells, approx. 26.5 x 23 km). The Milicz forest district constitutes approximately 35%306

of this area. The test data contained approximately 5.2 billion raster cells with an assigned value (not-null307

values).308

The orthophoto map data was stored in the projected coordinate system for Poland — PUWG 1992309

(EPSG: 2180).310

3.3. Vegetation indices311

A series of calculations were made on the test data to compare the performance of raster map calculators.312

Three spectral indices often used in natural sciences were used as test formulas:313

3.3.1. Normalized Difference Vegetation Index, NDVI314

NDV I =
NIR−RED

NIR+RED

where315

NIR - Near Infrared band, RED - RED band316

317

NDVI is one of the most frequently used vegetation indices (Rouse, Haas, Schell and Deering, 1973;318

Silleos, Alexandridis, Gitas and Perakis, 2006) in nature, agricultural, and forest research. Its popularity319

is due to the simplicity of the mathematical formula, and therefore the speed with which it is possible to320

identify areas covered with vegetation containing chlorophyll, or to determine vegetation conditions in a321

given area.322

The popularity of the NDVI is also due to the elimination of the area differentiated lighting problem323

related to the topography and the incidence angle of sunlight.324

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 8 of 15

Comparison of different implementations of a raster map calculator

3.3.2. Corrected Transformed Vegetation Index, CTVI325

In 1975, Deering et al. (Deering, Rouse, Haas and Schell, 1975) proposed a modification of the formula326

allowing the calculation of the NDVI by creating the TVI (Transformed Vegetation Index):327

TV I =
√
NDV I + 0.5

The TVI allows the Poisson distribution, which approximates the NDVI distribution, to be changed to328

normal distribution. Additionally, entering a value of +0.5 eliminates some negative values. With NDVI329

values <-0.5, however, the TVI cannot be calculated. To solve this problem, Perry and Lautenschlager330

(Perry and Lautenschlager, 1984) proposed the Modification of the TVI formula by introducing the CTVI:331

CTV I =
NDV I + 0.5

|NDV I + 0.5|
√
|NDV I + 0.5|

In this study, the CTVI formula proposed for the Sentinel-2B satellite in the online database of vegetation332

indices indexdatabase.de was used:333

CTV I =
RI + 0.5

|RI + 0.5|
√
|RI + 0.5|

where334

RI - Normalized Difference Red/Green Redness Index;335

RI =
RedEdge−Green

RedEdge+Green

In the case of the orthophoto map, the red band from the CIR image was used in place of the Sentinel’s336

Red Edge band to calculate the CTVI as there was no Red Edge band on CIR data.337

3.3.3. Soil Adjusted Vegetation Index. SAVI338

The SAVI, which is another modification of the NDVI formula was introduced in 1988 by Huete (Huete,339

1988). SAVI allows the minimization of the influence of soil on the signal coming from areas covered with340

vegetation. In the formula, the variable L was introduced. The value of L is selected depending on the341

density of the vegetation to be analyzed. L-values change with soil characteristics. The formula to calculate342

the index is:343

SAV I =
NIR−RED

NIR+RED + L
(1 + L)

where344

L – soil brightness factor with values ranging from -0.9 to 1.6 (usually 0.5 for intermediate vegetation345

density).346

3.4. Calculation procedure347

The NDVI was chosen due to the simple structure of the formula, requiring only three arithmetic opera-348

tions. The CTVI additionally involves the calculation of the absolute value and the square root. The SAVI349

was chosen due to the possibility of performing a series of calculations in which the variable L has a value350

in the range from 0.9 to 1.6. SAVI was computed for L from the above range in the testing procedure, with351

a step of 0.1. This gave a total of 26 iterations of the loop. The results of all tests were stored in files as the352

Float32 type.353

The iterative calculation of the SAVI also allows the use of alternative paths to perform this operation.354

In the case of GRASS GIS, both r.mapcalc’s ability to generate many result layers in one calculator call,355

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 9 of 15

Comparison of different implementations of a raster map calculator

and the for loop in shell script were used to create a single result layer numerous times. A similar procedure356

was used in the case of the plMapcalc calculator, which allows the calculation of many result files during357

one program call. With the gdal_calc.py and SAGA calculators, it was only possible to use bash loops.358

The iterations necessary to compute the SAVI were performed with the internal for-loop command in the R359

system.360

The input data files were not compressed. The calculations were performed on a single processor core.361

In the case of calculators with the ability to enable parallel processing (R and SAGA), the calculations were362

done additionally using all possible cores of the test computer.363

If the calculator required data to be imported into a specific internal database format before performing364

the calculations, the import operation time was also calculated. The time of exporting the calculation results365

to external files and all additional operations performed in the tested GIS environment were also counted366

separately. For example, a GRASS GIS system in batch mode requires a system database structure (location367

and mapset) to be created on the fly. In the R system, additional operations are as follows: creating a group368

of layers using the stack function or creating a multi-layer object using the brick function.369

3.5. Testing environment370

Computational tests were performed on a computer with an i7 processor, 32 GB RAM, 10 TB HDD371

running under Linux Fedora 32. A set of console scripts was prepared to test the selected raster calculators.372

The runtime of raster calculator calls was measured with the GNU "time" utility. In the case of R scripts,373

the computation time of the raster calculator calls was determined using the Sys.time() function.374

The following versions of software were used: GDAL 2.3.2, GRASS GIS 7.6.0, SAGA 2.3.1, plmapcalc375

1.2.422, R 3.6.3 with libraries raster (3.3.7) and sp (1.4.2). All programs but plMapcalc were installed from376

the Linux Fedora system repository.377

4. Results378

During the calculations, 414 result files for the satellite scene and 244 files for orthophoto maps were379

created with a total size 14.4 TB (after compression approximately 3 TB). The resulting data were stored380

with a single precision. The small dataset – Sentinel-2B satellite scene – did not cause any problems in381

calculation. All calculators finished all operations, i.e. opening, processing the data, and storing (export)382

the results.383

When calculations of indices were performed with an orthophoto dataset, two calculators did not generate384

results: SAGA and ’calc’ from the R system. The large files exhausted computational resources required by385

these calculators. Other calculators were able to handle the amount of data and produced results.386

4.1. Calculation efficiency387

Two map calculators – gdal_calc.py and plMapcalc – work on GeoTIFF files directly, and there was no388

conversion necessary. The R ’calc’ function requires the creation of a RasterStack object and an extra export389

procedure. SAGA and GRASS raster calculators need input data imported to the native GIS databases.390

These two calculators also need the results to be exported from the internal database to the external raster391

file. The data converted to the internal format allows faster access and accelerates the calculation. The392

GRASS calculator also has the possibility to work on layers in external mode. In this mode, the data are393

stored in external GeoTIFF files and these files are registered in the GIS database for the calculation times.394

There is no need to run an export procedure as r.mapcalc saves the results to the external file directly.395

Each raster calculator can be run in different configurations (multiple outputs, parallel processing, etc.).396

The calculation times for all configurations are shown in Figures 5 and 6. The meaning of processing397

procedure names on these figures:398

1. gdal_calc - gdal_calc.py was run on one CPU core399

2. GRASS - r.mapcalc was run on the internal GRASS database400

3. GRASS (ext) - r.mapcalc was run on external GeoTIFF files401

4. GRASS (multi) - r.mapcalc was run on the internal GRASS database with improved data access402

5. GRASS (ext, multi) - r.mapcalc was run on the external GeoTIFF files with improved data access403

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 10 of 15

Comparison of different implementations of a raster map calculator

Figure 5: Operations times of CTVI (A), NDVI (B), and SAVI (C) calculation for Sentinel-2B scene. Total processing
time is divided into calculation, import, export, and other tasks. The grey segments separate different raster calculators.

6. SAGA - SAGA calc was run on one CPU core404

7. SAGA (parallel) - SAGA calc was run on 12 CPU cores405

8. R, calc, stack - calc function run on a RasterStack object406

9. R, calc, stack, brick - calc function run on a RasterBrick object407

10. R, calc, stack, clusterR - calc function run on a RasterStack object in parallel mode408

11. R, calc, stack, brick, clusterR - calc function run on RasterBrick object in parallel mode409

12. R, stack - the formula was calculated on a RasterStack object410

13. R, stack, brick - the formula was calculated on a RasterBrick object411

14. plMapcalc - plMapcalc was run on one CPU core412

15. plMapcalc (multi) - plMapcalc was run on one CPU core and created multiple output files in one run413

16. plMapcalc (parallel) - plMapcalc was run on 12 CPU cores414

17. plMapcalc (parallel, multi) - plMapcalc was run on 12 CPU cores and created multiple output files in415

one run416

To compare the calculation efficiency, two parameters are considered: total processing time, and calcu-417

lation time. Total processing time is important when a user needs to start with a file in a common raster418

format and wants to obtain a similar file as a result of the processing. The calculation time is more relevant419

if a user limits his/her activity to one GIS system and does not want to export the calculation results.420

The total processing time differs significantly between calculators. For Sentinel-2B data, the best CTVI421

total processing time varies from 7.04 s for plMapcalc to 21.87 s for GRASS r.mapcalc (Figure 5 A). For422

all calculators but plMapcalc, NDVI calculations were longer than CTVI calculation – 12.88 to 26.01 s.423

plMapacal did this calculation in a comparable time (7.09 s) to the CTVI calculation (7.04 s) (Figure 5 B).424

SAVI was a batch calculation test of a set of output layers. The calculations can be done in serial mode in a425

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 11 of 15

Comparison of different implementations of a raster map calculator

Figure 6: Operations times of CTVI (A), NDVI (B), and SAVI (C) calculation for the orthophoto map. The total processing
time is divided into the calculation, import, export, and other tasks. Some bars are missing because the software could
not process such a large file. The grey segments separate different raster calculators.

loop or using multiple outputs of raster calculators if the calculator provides such an option. plMapcalc was426

the most efficient (113 s) and overperformed the slowest solution by three times – gdal_calc.py – 356.63 s427

(Figure 5 C).428

In general, gdal_calc.py has a similar total processing time as plMapcalc, but other calculators are slower.429

gdal_calc.py and plMapcalc do not need any extra import/export operations. In the case of GRASS and430

SAGA, import and export procedures add significant overhead, up to 3 times longer than the calculation431

itself. The ‘raster’ library in the R system can import the data to StackRaster object quickly but writing432

the output file is expensive in terms of time and adds approximately 30% to the calculation time.433

Problems can arise with increasing amounts of data. R and SAGA cannot handle orthophoto map data434

to produce results. The total processing time varies from minutes for CTVI and NDVI to hours for SAVI.435

plMapcalc was the most efficient. A similar result was obtained by gdal_calc.py. GRASS (r.mapcalc) gave436

the worst results (Figure 6).437

The best total processing and pure calculation times for each raster map calculator are presented in438

Table 1.439

To compare the overall performance of all calculators, we conducted a ranking procedure. The calculated440

ranks are presented in the lower part of Table 1 and in Figure 7. In the case of issues with large data files441

and a lack of results, the raster calculator was ranked as the last. plMapcalc outperforms other calculators442

in the ranking. In the calculation time ranking, the advantage of the dedicated GRASS and SAGA GIS443

databases can be noticed. The R system is ranked as being the worst.444

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 12 of 15

Comparison of different implementations of a raster map calculator

Table 1
Best total processing times, and best calculation times with ranking

Total processing time Calculation time

GDAL GRASS SAGA R PlMapcalc GDAL GRASS SAGA R PlMapcalc

Sentinel-2B [s]
CTVI 9.80 21.87 13.85 15.23 7.04 9.80 9.64 4.29 8.62 7.04
NDVI 13.90 26.01 19.71 12.88 7.09 13.90 5.48 3.48 6.68 7.09
SAVI 356.63 283.71 183.05 339.22 113.45 356.63 170.88 113.32 182.97 113.45
Ortophoto map [h]

CTVI 0.2095 0.4425 — — 0.1703 0.2095 0.3013 — — 0.1703
NDVI 0.1825 0.4031 — — 0.1651 0.1825 0.2427 — — 0.1651
SAVI 4.9077 9.5964 — — 4.3367 4.9077 7.7285 — — 4.3367

Ranks
Sentinel-2B

CTVI 2 5 3 4 1 5 4 1 3 2
NDVI 3 5 4 2 1 5 2 1 3 4
SAVI 5 3 2 4 1 5 3 1 4 2
Ortophoto map

CTVI 2 3 4 4 1 2 3 4 4 1
NDVI 2 3 4 4 1 2 3 4 4 1
SAVI 2 3 4 4 1 2 3 4 4 1

TOTAL 16 22 21 22 6 21 18 15 22 11

Total p
roce

ssi
ng tim

e

Calcu
latio

n tim
e

6

8

10

12

14

16

18

20

22

24

O
v
e
ra

ll
ra

n
k

GDAL

GRASS

SAGA

plMapcalc

GDAL

GRASS

SAGA

R

plMapcalc

R

Figure 7: Final ranks of raster map calculators based on total processing time (left), and calculation time (right). A lower
rank value and higher position on the graph indicates better performance.

4.2. Calculation precision445

The results of all calculations were stored. In the next step, we compared resulting layers with each446

other. The maximum difference, MAE, and RMSE were calculated. For all comparisons, these statistics447

took a value of 0 with a single floating-point precision. The only difference was for treating the results of448

the division by zero. According to IEEE 754 (IEEE, 2019), standard division by zero may result in INF449

or NAN. All calculators except plMapcalc treated these values as no-data value. In plMapcalc, there is an450

option to choose whether these values should be no-data or real values in further calculations.451

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 13 of 15

Comparison of different implementations of a raster map calculator

5. Discussion452

Analyzing raster map calculators is a challenging task. Each calculator has its advantages and disadvan-453

tages. Some of them are part of GISs, while others are standalone.454

In this paper, a new calculator is presented – plMapcalc. This solution tries to find a balance between455

speed of calculation, direct accession of many raster formats, and the ability to perform complex analysis.456

Thanks to the memory buffer and multiple input file scanning options, it can be used to standardize457

raster map calculus and perform reclassification, modeling, or statistical calculations. All these possibilities458

can be used without a loss of calculation speed or significant requirement of memory.459

The raster calculator’s comparison according to the processing efficiency and data size scalability shows460

that plMapcalc is ranked as the most efficient calculator and it can handle large datasets.461

For the remaining calculators, the test results show that for advanced modeling of relatively small462

datasets, ’calc’ from the R system is the right choice. SAGA is a tool for fast processing of datasets in463

a GIS environment. The SAGA parallel processing optimization is very impressive. For large datasets,464

GRASS is the only tested solution in the GIS environment. r.mapcalc works fast with datasets stored in the465

internal GRASS database. For these files, gdal_calc.py is another tool for raster algebra calculations, and466

it comes as part of the toolset with the GDAL library. It does calculations almost as fast as plMapcalc.467

plMapcalc comes as a standalone program without any GUI. The next step will be providing a Quantum468

GIS plugin to make this calculator available in the GIS.469

At the current stage, plMapcalc can only perform calculations locally. Accessing the neighborhood of a470

cell will allow the analysis class to be extended to focal operations. This is planned as a next step in the471

development of plMapcalc.472

6. Computer Code Availability473

plMapacalc is an open source software written in C and is available under the GNU Public License. It474

was developed by Pawel Netzel (pawel at netzel dot pl) and can be run under Linux or Windows. The first475

release of plMapcalc was in 2015. The current version presented in the paper – plMapcalc 1.3 – is available476

since November 2020.477

The main code repository of plMapcalc is available from plMapcalc’s web page http://plmapcalc.478

netzel.pl. The repository contains the source code, binaries, examples, and the manual. It also includes479

the data and scripts used for calculations in this paper.480

References481

Achhab, N.B., Raissouni, N., Azyat, A., Chahboun, A., Lahraoua, M., 2010. High performance computing software package482

for multitemporal Remote-Sensing computations. International Journal of Engineering and Technology .483

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., 2015. System484

for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development doi:10.5194/gmd-8-1991-2015.485

Deering, D.W., Rouse, J.W., Haas, R.H., Schell, J.A., 1975. Measuring "FORAGE PRODUCTION" of grazing units from486

LANDSAT MSS data.487

Guan, Q., Clarke, K.C., 2010. A general-purpose parallel raster processing programming library test application us-488

ing a geographic cellular automata model. International Journal of Geographical Information Science doi:10.1080/489

13658810902984228.490

Guan, Q., Zeng, W., Gong, J., Yun, S., 2014. pRPL 2.0: Improving the Parallel Raster Processing Library. Transactions in491

GIS doi:10.1111/tgis.12109.492

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment doi:10.1016/0034-4257(88)493

90106-X.494

IEEE, 2019. IEEE Standard for Floating-Point Arithmetic. IEEE STD 754-2019. IEEE , 1–84.495

Liu, J., Feld, D., Xue, Y., Garcke, J., Soddemann, T., Pan, P., 2016. An efficient geosciences workflow on multi-core processors496

and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data. International Journal of Digital Earth497

doi:10.1080/17538947.2015.1130087.498

Neteler, M., Mitasova, H., 2008. Open Source GIS: A GRASS GIS Approach (3rd Edition). doi:10.1186/1476-072X-7-53.499

Netzel, P., 2020. The plMapcalc manual. http://pawel.netzel.pl/data/uploads/pdf/mapcalc_manual.pdf.500

Perry, C.R., Lautenschlager, L.F., 1984. Functional equivalence of spectral vegetation indices. Remote Sensing of Environment501

doi:10.1016/0034-4257(84)90013-0.502

Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, M.F., 1999. ’C and tcc: A language and compiler for dynamic code503

generation. ACM Transactions on Programming Languages and Systems doi:10.1145/316686.316697.504

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 14 of 15

http://plmapcalc.netzel.pl
http://plmapcalc.netzel.pl
http://plmapcalc.netzel.pl
http://dx.doi.org/10.5194/gmd-8-1991-2015
http://dx.doi.org/10.1080/13658810902984228
http://dx.doi.org/10.1080/13658810902984228
http://dx.doi.org/10.1080/13658810902984228
http://dx.doi.org/10.1111/tgis.12109
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1080/17538947.2015.1130087
http://dx.doi.org/10.1186/1476-072X-7-53
http://pawel.netzel.pl/data/uploads/pdf/mapcalc_manual.pdf
http://dx.doi.org/10.1016/0034-4257(84)90013-0
http://dx.doi.org/10.1145/316686.316697

Comparison of different implementations of a raster map calculator

Qin, C.Z., Zhan, L.J., Zhu, A.X., 2014. How to Apply the Geospatial Data Abstraction Library (GDAL) Properly to Parallel505

Geospatial Raster I/O? Transactions in GIS doi:10.1111/tgis.12068.506

Rosario, J.M., Bordawekar, R., Choudhary, A., 1993. Improved parallel I/O via a two-phase run-time access strategy. ACM507

SIGARCH Computer Architecture News 21(5), 31–8.508

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D., 1973. Monitoring the vernal advancement and retrogradation (green wave509

effect) of natural vegetation. Progress Report RSC 1978-1 .510

Saribekyan, A.G., 2013. Performance of ndvi index on hpc resources. Mathematical Problems of Computer Science 39, 48–53.511

Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K., 2006. Vegetation indices: Advances made in biomass estimation and512

vegetation monitoring in the last 30 years. doi:10.1080/10106040608542399.513

Silva-Coira, F., Parama, J., Ladra, S., Lopez, J., Gutierrez, G., 2020. Efficient processing of raster and vector data. PLoS ONE514

15(1). doi:10.1371/journal.pone.0226943.515

Steinbach, M., Hemmerling, R., 2012. Accelerating batch processing of spatial raster analysis using GPU. Computers and516

Geosciences doi:10.1016/j.cageo.2011.11.012.517

Strimas-Mackey, M., 2020. Raster summarization in python. https://strimas.com/post/raster-summarization-in-python/.518

Tomlin, C., 1990. Geographic Information Systems and Cartographic Modeling. Prentice-Hall, Englewood Cliffs, NJ, USA.519

Verbeurgt, J., Stal, C., De Sloover, L., Deruyter, G., De Wulf, A., 2020. R and python benchmarking for geographical520

applications, p. 8.521

Warmerdam, F., 2008. The Geospatial Data Abstraction Library, in: Open Source Approaches in Spatial Data Handling.522

doi:10.1007/978-3-540-74831-1_5.523

Yildirim, A.A., Watson, D., Tarboton, D., Wallace, R.M., 2015. A virtual tile approach to raster-based calculations of large524

digital elevation models in a shared-memory system. Computers and Geosciences doi:10.1016/j.cageo.2015.05.014.525

Netzel P., Slopek J.: Preprint submitted to Elsevier Page 15 of 15

http://dx.doi.org/10.1111/tgis.12068
http://dx.doi.org/10.1080/10106040608542399
http://dx.doi.org/10.1371/journal.pone.0226943
http://dx.doi.org/10.1016/j.cageo.2011.11.012
https://strimas.com/post/raster-summarization-in-python/
http://dx.doi.org/10.1007/978-3-540-74831-1_5
http://dx.doi.org/10.1016/j.cageo.2015.05.014

	Introduction
	Raster map calculators
	plMapcalc (proposed solution)
	Internal architecture of plMapcalc
	Workflow of plMapcalc
	Example of plMapcalc usage

	GDAL (gdal_calc.py)
	GRASS (r.mapcalc)
	SAGA (Grid Calculator)
	R raster (calc from raster library)

	Datasets and calculation procedure
	Sentinel-2B data
	Orthophoto map
	Vegetation indices
	Normalized Difference Vegetation Index, NDVI
	Corrected Transformed Vegetation Index, CTVI
	Soil Adjusted Vegetation Index. SAVI

	Calculation procedure
	Testing environment

	Results
	Calculation efficiency
	Calculation precision

	Discussion
	Computer Code Availability

