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Abstract: Variation in tree stem form depends on species, age, site conditions, etc. Stem taper models1

that estimate stem diameter at any height and volume should comply with this complexity. In the2

paper, we propose new methods taking into account both unbiased estimates and stem variability:3

(i) an expert model based on an artificial neural network (ANN) and (ii) a statistical model built4

using a regression tree (REG). We used the variable-exponent taper equation (STE) as a reference5

for these two models. Input data contain information about 2,856 trees representing eight dominant6

forest-forming tree species in Poland (birch, beech, oak, fir, larch, alder, pine, and spruce). The trees7

were selected across stands varied in terms of age and site conditions. Based on the data, we built8

ANN and REG models and calculated both stem taper and tree volumes. The results show that ANN9

is a universal approach that offers the most precise estimation of stem diameter at a particular stem10

height for different tree species. The results for alder are an exception. In this case, the REG model11

performs slightly better than ANN. In terms of volume prediction, the ANN model provides the most12

accurate predictions for coniferous and beech. In general, flexibility and predictive performance of13

the ANN are better than REG and reference the STE equation.14
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1. Introduction16

Models for estimating a stem taper enable one to estimate stem volume, thus being useful in both17

the assessment of the economic value of timber production and forest conservation management [9].18

According to the IPCC methodology, merchantable timber volume is used to convert the growing19

stock of forest stands into the amounts of biomass and carbon accumulated in trees [11], with the help20

of either biomass conversion and expansion factor (BCEF) or biomass expansion factor (BEF). Such21

conversion requires accurate and unbiased systematic errors as well as methods for timber volume22

determination. Taper models, which allow the estimation of tree shape and wood assortment volume23

are also one of the most important types of practical information used in the forest management and24

timber industry [3]. Therefore, the accurate determination of the shape of a tree stem and the tree25

volume is crucial for forest research and practice.26

Generally, stem taper can be described by either a set of linear models, describing diameters27

at different relative tree heights or by nonlinear models describing the whole stem profile [24]. The28

linear models are less biased in tree diameter estimation, however these models suffer from a serious29

disadvantage: they do not enable one to estimate a stem diameter at any height [19,38]. Nonlinear30

models, such as segmented taper equations [2,4–6,8], or variable-exponent taper equations [1,20,23,28,31

29,36,39] overcome this problem — but not without a cost [37].32
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A comparison of linear and nonlinear models should take into account their robustness to33

assumptions, in particular the one of data homogeneity. Nonlinear models are more sensitive to such34

phenomena as outlier values, stochastic noise in the variables, anomalies in sample randomness, and35

measurement errors, which all can increase systematic errors. Among the nonlinear heuristic models36

used for stem profile modeling, variable-exponent taper equations are considered the best [20,37].37

The shape of a tree stem is genetically determined, but it also depends on various factors, such38

as the site conditions, climate, the height of the crown base, and age. Therefore, it also varies among39

trees of the same species [44]. Socha [43] showed that a pine stand’s density affects the shape of the40

upper part of the stems. A good fit of a model largely results from the independent variables used. For41

example, Murhaiwe [27] showed that including a crown ratio variable in a variable-exponent taper42

equation [20] helped improve the model’s fit for shore pine but not for common aspen. Thus, many43

taper equations are specific for a given species, stands of a particular age, or a particular site conditions.44

What is more, trees of irregular shapes often are excluded during data preprocessing. While among45

most coniferous species, trees of irregular shape are rare, among deciduous species and other species46

with high plasticity in morphology they can be quite frequent. Removing them might limit the sample47

to regularly - shaped trees, and so the usefulness of such models would only be limited to such trees -48

such models, thus, should not be used for irregular trees [25]. If such irregulars constitute a significant49

part of the population - a likely scenario in the case of deciduous trees - then such models are not useful.50

Assessment of stem taper models for mentioned cases is usually based on results of unbiased estimates51

[24]. Nonetheless, a model’s precision of prediction does not always correspond to its universality, an52

important aspect in practice.53

One of universal approach that includes both - unbiased estimates and precise estimation of a54

stem diameter at a particular stem height, can be artificial neural networks (ANNs). The literature55

have shown examples indicating that in this context ANNs give better results than do mathematical56

and statistical methods [31,32]. The most popular among multilayer perceptron (MLP), ANNs with57

three layers can theoretically be considered universal approximators [14].58

Since ANNs can learn, they do not require one to have the full a priori knowledge of a system59

studied: Thus, they enable one to build models without the prior formulation of statistical hypotheses60

[33]. They can also work with data that are noisy and low quality [12,13,17]; the latter aspect –61

paradoxically - can even improve the network’s learning capacity and the generalization of its results.62

ANNs can model complex, multivariate nonlinear relationships, often difficult to represent with known63

mathematical functions. For example, [10] applied ANNs to analyze a tree diameter distribution, and64

sigmoid activation functions they implemented in the ANN led to a better fit to bimodal distributions65

than that of the Weibull function.66

ANNs have also been widely used in forest management, including the estimation of tree height,67

diameter, and volume [15,33].Various types of networks have been used to meet these aims, including68

radial basis functions (RBF) [26] and, the most frequent ones, one - or two - layer perceptron MLP69

[30,35,41,42]. Conceptually, the models used in these works differed not only in architecture, but70

also in data input and model evaluation. According to Kozak and Smith [21], the evaluation of taper71

models should include evaluating the precision of both diameter and volume prediction as well as the72

universality of predicting stem shape for various species. From the point of view of forestry practice,73

such a model should also work with various independent variables and be simple to implement.74

Most ANN models for stem taper approximation focus on only one species [41,42]. Models75

focused on many species incorporate species information as a parameter [35]. Often, the information76

about species is a part of an equation or a direct input value [30].77

A regression approach to model stem taper was used by Kilkki et al. [16]. The authors considered78

three models: single-equation, simultaneous-equation, and multi-equation. The first two lead to a79

single equation while the last one to a system of regression equations. In such a system, equations80

are related to each other. Socha and Kulej [44] introduced a parallel-equation model, in which all81

regression equations are independent of each other. They examined different selections of independent82
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variables and only used a set of 20 equations (with only ten cross-sections) to describe a stem taper83

shape. Moreover, this solution works with just one species.84

In the paper, we propose two new solutions for modeling tree taper: (i) an expert model based85

on an artificial neural network model and (ii) a statistical model built using a regression tree. The86

solutions aim to provide tools for calculating stem profile and tree volume with high efficiency and low87

bias. The results of tree taper modelling using models (i) and (ii) were compared with a well-known88

and frequently used in forest research variable-exponent taper model developed by Kozak [23,37]. An89

outcome of all these models give a stem profile, which is then integrated along tree height, giving tree90

volume. For the models, we will use training data for eight tree species, with high vertical resolution91

of 0.01 of normalized tree height. The trees in the data set vary in terms of age and site conditions in92

which they grow.93

We compare three solutions for modeling tree taper (two new models and a reference solution):94

(i) an machine learning model based on an artificial neural network model, (ii) a statistical model built95

using a regression tree, and (iii) variable exponent taper equation by Kozak (2004) recommended in96

[34,37].97

The specific aims of this study were:98

(1) to compare the modelling techniques with respect to their performance to estimate stem profile99

and tree volume;100

(2) to rank the modelling techniques according to predictive performance for various tree species;101

(3) to find a modelling technique that combines estimating of stem taper shape for many tree species102

into one model.103

2. Data and data preprocessing104

Cross-sectional measurements of the outside-bark diameter were collected in 357 stands,105

distributed throughout Poland and representing the whole range of site conditions and age of the tree106

species analyzed (Fig.1.). In each stand, a sample plot with at least 100 trees was established. After107

their diameters had been measured, the trees were divided into eight size classes of equal sizes (i.e.,108

consisting of the same number of trees). In the next step, from each class one tree with average diameter109

and height was selected and felled for cross-sectional measurements; thus, eight trees representing110

were measured in each stand. Altogether, a total of 2,856 trees representing eight major forest-forming111

tree species in Poland were collected, including 504 Scots pines (Pinus sylvestris L.), 458 Norway112

spruces (Picea abies (L.) H. Karst), 262 European larches (Larix decidua Mill.), 219 silver firs (Abies113

alba Mill.), 479 common oaks (Quercus robur L.), 430 common beeches (Fagus sylvatica L.), 270 black114

alders (Alnus glutinosa Gaertn.), and 234 silver birches (Betula pendula Roth.).115

The diameter measurements were taken directly with a caliper at the following heights: 0.0, 0.5,116

1.3, and 2.0 m, and then every 1 m to the top. The diameter at breast height (dbh) ranged from 0.30 to117

79.20 cm and their height (h) from 1.35 to 42.05 m (table 2). Additionally, total tree height and height118

up to 7 cm of stem diameter were measured. For final analysis, we selected data from trees with a119

diameter at breast height larger than 7 cm.120

The dataset was preprocessed to provide input for a model’s calibration. The height of each tree121

was normalized to a range from 0 to 1, and stem diameter was interpolated every 0.01 of normalized122

height. Interpolations were necessary in the case of regression model, in which particular equations123

describe tree diameters at given relative heights. We used piecewise cubic Hermite polynomials [18] to124

obtain interpolated values.125
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Figure 1. Map of the locations of sample plots. On each sample plot 8 trees have been cut for sectional
measurement.

Table 1. Summary statistics of diameter at breast height (dbh) and total tree height (H) for different
tree species.

Species dbh [cm] H [m]
min max avg std min max avg std

Silver birch 2.10 51.00 20.81 10.50 5.13 38.30 20.90 6.69
Common beech 0.50 66.25 26.36 16.10 2.68 42.05 23.31 10.33
Common oak 16.00 79.20 28.77 14.68 2.75 36.40 22.21 7.38
Silver fir 0.70 66.85 26.08 15.26 1.58 37.50 20.96 9.30
European larch 0.50 68.60 31.40 13.44 2.73 40.70 25.85 7.99
Black alder 3.15 46.00 20.75 9.64 6.66 31.27 20.59 6.36
Scots pine 0.30 65.15 25.96 11.75 1.35 35.21 22.43 7.42
Norway spruce 0.80 76.40 26.45 13.85 1.75 39.54 22.55 9.03

Table 2. The number of trees in the subsets after data filtering.

Species Total In a training set In a testing set

Silver birch 234 139 95
Common beech 430 257 173
Common oak 479 286 193
Silver fir 219 130 89
European larch 262 156 106
Black alder 270 161 109
Scots pine 504 301 203
Norway spruce 458 274 184
Total 2856
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Figure 2. From left to right: (A) the stem taper equation (STE) model, (B) the regression tree (REG)
model, and (C) the artificial neural network (ANN) model.

3. Methods126

3.1. Models127

Our model works as an expert system. It consists of three modules: for controlling data-flow, for128

summarizing output, and for calculating tree volume; each species has its own dedicated model (see129

Fig. 2 A – 2 C).130

STE and ANN models have similar structures (fig. 2 A and fig. 2 C). The input data contain131

information about a tree species, based on which the species selector sends parameters to the internal132

modeling module, calibrated for this species. Next, the output of the internal model is integrated by133

the volume calculator to obtain a stem taper volume. In the REG model’s case (fig. 2 B), input data are134

sent to a set of regression equations, calibrated for the specific species. Based on the results of these135

regressions, a stem taper shape is built. Finally, like in STE and ANN models, the output is integrated136

to obtain a stem volume.137

3.2. Methods used in models138

We compared following methods for approximating a stem shape: a taper equation, a regression139

set model, and a feed-forward neural network. As a reference, we calibrated a variable exponent taper140

equation introduced by Kozak [23].141

Kozak introduced a variable exponent equation in the following form142

di = a0∗Da1∗Ha2∗X

(
a3∗z4

i +
a4∗1

e(
D
H )

+a5∗X0.1
i +

a6∗1
D +a7∗HQi+a8∗Xi

)
i (1)

where: Xi =
Qi(

1−p
1
3

) , Qi = 1− z
1
3
i , zi =

hi
H , p = 1.3

H .143

In this notation, dbh means diameter at breast height in cm, H is total tree height, and di is a stem144

diameter in cm at zi relative height .145

To calibrate this model, we transformed it with logarithmic transformation and calculated the146

coefficients with the least squares method [23].147

A regression set model consists of two components: a decision rule and a set of regressions. The148

decision rule takes into account the normalized height. The normalized height is ranging from 0 to149

1. Next, the rule selects a proper regression model for this normalized height. Since stem taper is150

approximated with the resolution of 0.01, our set of regressions contains 100 regression equations.151

Each equation has the following form:152
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d = a0 + a1∗D + a2∗H (2)

where: d – stem diameter in cm, D – diameter at breast height in cm, and H - total tree height in153

meters.154

As a result, we obtained a set of 100 vectors in the form [a0, a1, a2] that describes a stem taper155

shape.156

The third method – an artificial neural network model (ANN) – was implemented as a multilayer157

perceptron network [40]. It contains four layers: an input layer of 4 neurons, two hidden layers of158

5 and 17 neurons, and an output layer of 101 neurons. Each neuron was activated with a sigmoid159

function. To each hidden layer, we added a bias neuron. Each network layer was connected to the160

next layer only. The network was trained with a simple backpropagation algorithm [40]. The training161

set was presented to the network 5000 times (5000 epochs). The number of epochs were set to 5000 to162

avoid network’s overfitting. The number of hidden layers was selected to speed up learning process.163

As a network input, the following parameters were used: diameter at breast height in cm164

multiplied by 0.005 for scaling purposes, total tree height in meters multiplied by 0.01 (H), H’/H165

(where H’ is a height up to 7 cm of stem diameter), and p (p=1.3/H). The network’s output provides166

expected diameters at 101 (from 0 to 1 with a 0.01 step) normalized heights. The output stem diameter167

values were multiplied by 0.005 in the training set.168

Unlike Nunes and Görgens [30], we did not force ANN to recognize a tree species, but we assumed169

that the models should be calibrated for each tree species separately. Thus, we built an ANN model for170

each species, an approach that leads to a more straightforward and better-trained network.171

To calibrate/train each model, we divided using random selection of cases the data set into two172

sets: a training set (60% of the data) and a testing set (40%). Table 1 presents the distribution of trees173

between the training and testing sets for all the species studied.174

The training sets were used to calibrate all three models while the testing sets for the assessment175

of the stem taper models, based on the following model statistics:176

root mean squared error, RMSE =

√
∑ (yi−y′ i)

2

n ,177

mean error/bias, ME = ∑ (yi−y′ i)
n178

model efficiency, EF = 1− ∑ (yi−y′ i)
2

∑ (y′ i−ȳi
′)2 ,179

where yi – interpolated measurements at height i, y′i – modeled value at height i, ȳi
′ – average180

modeled value at height i.181

For the model evaluation criteria a ranking was made on a relative scale to compare the modeling182

techniques without separation into species. Moreover, we calculated stem volumes V, integrating183

the stem taper shapes along the tree heights. The values of RMSE, EF and bias in diameter and184

volume estimation for all three models were assumed in blocks. Inside each block, they were ranked185

by assigned numbers from 1 to 3 (1 for the best and 3 for the worst result). Each block contained186

information about RMSE, EF and bias for single species so the ranks have been added to give general187

information for all eight species. The sum of ranks for each model was used to assess the quality of the188

model.189

4. Results190

4.1. Diameter estimates191

A mean bias in diameter of all the three models for all the species ranged from -0.0178 to -0.0838.192

For most species, the model mean errors did not differ from zero (p < 0.05), with the only exceptions of193

beech and alder: For the former, all the three models for beech were significantly biased, and for the194

latter, the ANN model was.195
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The most efficient technique for diameter estimation was ANN (its mean EF was 0.9777). This196

model was most efficient for larch and pine. For larch, EF for ANN was 0.9887, for Kozak’s model197

0.9846, and for REG 0.9878. For pine, EF for ANN was 0.9865, for Kozak’s model 0.9859, and for REG198

0.9825. ANN was the least efficient for beech, with EF of 0.9643; the other models were even less199

efficient, with EF 0.9640 for REG and 0.9590 for Kozak’s model.200

ANN was also the most stable taper equation in terms of RMSE, except for alder (table 3). For201

this species, REG’s RMSE was 1.4277 while ANN’s and Kozak’s were higher (1.5848 and 1.5522,202

respectively).203

To check the models, we plotted their residuals of diameter predictions versus diameter (d) (fig.204

?? - ??). The plots showed that for all the models, the errors symmetrically distributed around zero.205

Kozak’s taper equation model, however, showed the tendency for higher errors in the bottom and206

middle parts of the stems. For most species (beech, spruce, alder, larch, fir, and pine), the REG model207

showed errors in the lower part of the stem.208

We ranked the validation results (tab. 4), and the most precise technique for diameter estimation209

was ANN, followed by REG and Kozak’s model taper equation.210

4.2. Stem volume estimates211

Model validation for the stem volume prediction showed similar results to those for the diameter.212

ANN had the lowest mean RMSE over the species (0.1457), but its RMSE for beech was the highest213

among the three models (0.2817).214

ANN was the best model for birch, fir, larch, and spruce. For oak, ANN was better than the REG215

model but worse than Kozak’s. Kozak’s model was the most accurate and efficient for pine and oak.216

For alder, however, REG had the lowest RMSE (0.0796), the lowest RSME among all the models and all217

the species.218

Mean error ranged from -0.0551 (for the ANN model for beech) to 0.0051 (for the REG model for219

alder).220

In summary, for stem volume estimation, the best model was ANN, but - unlike for diameter221

estimation - Kozak’s model was better than the REG one (table 3).222

4.3. The models ranking223

To compare models as a complex expert systems without division to the particular tree species224

we applied ranking method. The sum of ranks for all evaluation criteria was on a [8-24] scale, which225

means that the best model obtained the lowest values and the worst model obtained the highest values226

(Table 4). Ranks have been calculated for the estimation of d and V separately.227

For prediction d, the range of variability is very high. It covers almost all possible variability228

range and takes from 9 to 24. For RMSE, the ANN model obtained almost the lowest possible rank229

value — 9, which indicates that it obtained the lowest error of all three models for almost all tree230

species — both coniferous and deciduous. Similarly, the ANN model obtained a value close to the231

minimum for EF — 10. The worst ranks for prediction d were assigned to Kozak (2004) model for232

RMSE and EF. RMSE and EF rank values indicates that, the ANN model was significantly better than233

Kozak (2004) and REG models.234

For prediction V, the range of rank’s variability is smaller than for prediction d. It covers variability235

from 15 to 18. For RMSE and EF, the ANN model obtained the best rank value —15. The worst ranks236

for prediction V were assigned to REG model for RMSE and EF. For ME, Kozak (2004) and REG turned237

out to be better than the ANN model. The ranks for prediction V assigned for Kozak (2004) and REG238

model was 15 in this case. The ANN model was slightly worse and obtained the rank—18.239

5. Discussion240

Choosing the best model describing the shape of a tree stem is a difficult task, especially when the241

choice is based on criteria related to a model’s prediction quality and utility. A model’s usefulness can242
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Table 3. Summary statistics of stem diameters (d) and volume (V) estimation using three methods for
different tree species.

d V
RMSE ME EF RMSE ME EF

Artificial neural network model (ANN)

Birch 1.5819 0.0115 0.9696 0.1062 0.0083 0.9517
Beech 2.6475 -0.2433 0.9643 0.2817 0.0551 0.9498
Oak 1.8229 0.1431 0.9812 0.1245 -0.0150 0.9861
Fir 1.7000 0.3868 0.9819 0.1687 -0.0355 0.9761
Larch 1.3573 0.1446 0.9887 0.1137 -0.0054 0.9904
Alder 1.5848 -0.6322 0.9707 0.1111 0.0481 0.9488
Pine 1.1928 0.2328 0.9865 0.0970 -0.0224 0.9799
Spruce 1.5930 0.1525 0.9787 0.1631 -0.0195 0.9649
Average 1.6850 0.0245 0.9777 0.1457 0.0017 0.9685

Regression set model (REG)

Birch 1.6394 0.0253 0.9674 0.1084 0.0127 0.9497
Beech 2.6596 0.1650 0.9640 0.2638 0.0431 0.9560
Oak 1.8651 -0.2855 0.9803 0.1279 -0.0274 0.9853
Fir 1.7405 -0.1368 0.9810 0.1696 -0.0072 0.9759
Larch 1.4105 -0.1825 0.9878 0.1395 -0.0159 0.9856
Alder 1.4277 0.0025 0.9762 0.0796 0.0051 0.9737
Pine 1.2170 -0.1370 0.9859 0.0957 -0.0104 0.9804
Spruce 1.8815 -0.1215 0.9703 0.2121 -0.0162 0.9407
Average 1.7302 -0.0838 0.9766 0.1496 -0.0020 0.9684

Variable exponent taper equation model Kozak (2004)

Birch 2.9160 0.0773 0.9646 0.1097 0.0157 0.9485
Beech 8.0456 0.3021 0.9590 0.2706 0.0424 0.9537
Oak 3.9225 -0.1914 0.9778 0.1221 -0.0224 0.9866
Fir 3.3972 -0.1200 0.9787 0.1784 -0.0135 0.9733
Larch 2.5084 -0.1402 0.9846 0.1271 -0.0087 0.9880
Alder 2.4097 0.0847 0.9719 0.0814 0.0073 0.9725
Pine 1.8411 -0.1064 0.9825 0.0925 -0.0114 0.9817
Spruce 3.6950 -0.0484 0.9690 0.2045 -0.0137 0.9449
Average 3.5919 -0.0178 0.9735 0.1483 -0.0005 0.9686

Table 4. Ranks of estimation errors for the diameters and volume for the three models on testing sets.

model RMSE ME EF

Diameters at relative heights

ANN 9 18 10
Kozak (2004) 24 14 23
REG 15 16 15

Tree volume

ANN 15 18 15
Kozak (2004) 16 15 16
REG 17 15 17
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Figure 3. Residuals versus fitted values for Kozak’s model for pine.

Figure 4. Residuals versus fitted values for the REG model for pine.
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Figure 5. Residuals versus fitted values for the ANN model for pine.

be defined in various ways, but it is usually closely related to the purpose of the modeling [19]. For the243

models presented, the main aim was to select a model with the highest quality of predictions diameters244

and total volume calculated based on them as well as universality in terms of obtaining forecasts for245

different tree species and stands of various ages. In current studies on this subject that include the246

use of ANN, this last condition has seldom been kept. For example, Soares et al. [41,42], using neural247

networks, applied the recursively series prediction method, which helped them limit the number of248

input variables to three. They developed this model, however, for one species, for trees of the same249

age obtained from clonal genetic material. In turn, Reis’ et al. [35] model was not verified in terms250

of the accuracy of tree volume’s estimation, and network input data based on plenty of previously251

prepared variables (e.g. competition index, forest class, etc.). In our opinion, such an approach limited252

the usefulness of the model. The model used by Nunes and Görgens [30] included as many as 72253

deciduous tree species, classified, however, into three types and used as a qualitative variable. Due to254

the number of the species and the diversity of stem shapes in different sites, the information on the255

origin of a tree was crucial for the model. In studies by Castaño-Santamaría et al. [7], who predicted256

tree height based on their diameter in tree stands of various ages, neural networks gave worse results257

than did other methods, likely resulting from the instability in the learning process.258

In terms of RMSE, our analyses indicate that artificial neural networks allowed for the most259

precise determination of a stem shape for all the species studied except for alder, for which the REG260

model was better. In terms of estimating tree volume, ANNs were the best for coniferous species and261

among deciduous ones only for birch (Betula pendula). The latter result may have to do with irregular262

morphological forms of deciduous species [25], whose shape is difficult to describe using a single263

function. However, the results obtained using neural networks were close enough to those obtained264

using the regression and Kozak (2004) models to suppose that they can improve, for example, after265

increasing the number of learning epochs or the size of the training set. Slightly higher errors were266

observed for regression models (REG) than for ANNs (except for alder). For both methods (ANN and267

REG), no systematic errors were found in the determination of diameters at different heights of a stem.268

In terms of total volume estimation, Kozak’s model proved to be the best for oak and pine.269

Attempts to describe stem shape using the Kozak taper-equation model resulted in obtaining systematic270

errors for some sections of the stem, especially in its lower and middle parts. Similar results were271

obtained by Rojo and Perales [37]: Using Kozak’s taper-equation model to describe stem shape, they272

showed overestimation for bottom parts of the stem, which, according to the authors, may result from273
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a lack of data for larger and/or older trees, whose stems have more neiloidal shapes in their lower274

parts. Other authors reported similar effects related to the occurrence of systematic errors when a275

single function was used to describestem curves: For example, in Li and Weiskittel [24], the Kozak276

model, being compared to other models based on one function, gave errors in the upper and middle277

parts of stems for red spruce. In the aforementioned studies, the Kozak model predicted better than278

to other models did for red spruce and white pine. In the study by Rojo and Prales [37], the Akaike279

criteria also indicated the Kozak model as the best choice for maritime pine in Galicia. We obtained280

similar results in our research in terms of the RMSE error only in terms of the determination of total281

volume for pine (Pinus sylvestris L.). At first sight the overall performance of all models seems to282

be similar. Although, the summarizing ranks (table 4) in terms of RMSE and EF show that the ANN283

model was the best for prediction both diameter and volume. The other two models (Kozak 2004 and284

REG) had lowest bias. High rank for bias of ANN model was caused by result for Alder.285

6. Conclusions286

It can be concluded that by creating stem shape models according to the recommendations by287

MacFarlane and Weiskittel [25], that is, avoiding exclusion criteria for irregularly shaped trees and288

for various species and different age stands, the neural networks model gave the most precise results289

in terms of diameter prediction.This model’s predominance was also visible in the prediction of tree290

volume for all coniferous species and birch.The REG model was estimated with smaller systematic291

errors, but its disadvantage is that it does not guarantee to well represent a monotonic convergent292

shape of a tree, because the individual regression equations are independent of each other. Like the293

Kozak model (2004), the REG model cannot be improved, which means that the class of the function294

describing a stem diameter for a given height does not change. Despite these inconveniences and its295

simplicity, the REG model works well, especially for describing stem volume.296

The neural model allows one to estimate a stem diameter at any height with high precision -297

just like the linear model - but its additional advantage is the possibility to improve it, for example,298

by increasing the training set, better matching the structure of the model to the shape topology of299

the species, changing the non-linear transition function, or changing the learning parameters. The300

analyses thus indicate that ANNs are a universal tool for constructing models of a stem shape and301

volume.They allow the construction of models with a very good fit to empirical data and without302

systematic errors at any part of the stem, at the same time allowing the determination of a diameter at303

any height of the tree. ANNs can therefore be used to build local models of a stem shape and volume,304

used in forest practice for forest inventory. In our opinion, further research should focus on optimizing305

the performance of ANN models.306
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