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Abstract  

We present a data-mining approach to climate classification. Local climates are 

represented as time series of climatic variables and a similarity between two local 

climates is calculated using the dynamic time warping (DTW) function which allows for 

scaling and shifting of the time axis to model the similarity more appropriately than the 

Euclidean function. A 30 arc second resolution global grid of climatic data is clustered 

into 31 climatic classes and the resultant world-wide map of climate types is compared to 

the empirical Köppen–Geiger classification. We also present a concept of climate search 

– an interactive, internet-based application that allows retrieval and mapping of world-

wide locations having climates similar to a user-selected location query. 
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1. Introduction  

Climate classification (CC) schemes discretize the local Earth land surface climatic 

properties to enable an assessment of global climate models, to help in identification of 

ecologically similar regions across continents, and to analyze global issues in hydrology, 

agriculture, and biology. 

Classical CCs such as the Köppen–Geiger (KG) approach (Kottek et al. 2006) rely on 

heuristic decision rules reflecting a body of environmental and geographical research, but 

they appear rather arbitrary from a modern, data-oriented perspective. Data-mining 

approach to CC reveals inherent spatial patterns in global distribution of climatic 

variables by means of unsupervised regionalization (spatial classification) – a process 

that divides the land surface into regions in a way that maximizes intra-region 

homogeneity and inter-region heterogeneity.  

Previous applications of unsupervised regionalization to CC (Zscheischler et al. 2012, 

Metzger et al. 2012) relied on the following set of techniques: representing local climates 

by vectors of climatic variables, using Euclidean distance to calculate dissimilarity 

between local climates, and using clustering in data space in lieu of regionalization. Each 

of these techniques is not an optimal approach to the problem of CC.  Here we present a 

data mining approach to CC that uses a different, more appropriate set of techniques: 

local climates represented as 12-months-long time series, dissimilarity between local 

climates measured by the Dynamic Time Warping (DTW) distance (Berndt and Clifford, 

1994), and grid segmentation as the means of regionalization. In addition, we introduce a 
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new analytic tool – climate search – as means to study a similarity of climates across the 

world. Climate search (CS) is an interactive, internet-based application that retrieves 

locations having climate similar to a user-identified query. 

2. Data and Methods  

We use climate data from the WordClim project (Hijmans et al. 2005). The following 

variables are used: monthly mean air temperature (Tave), monthly maximum air 

temperature (Tmax), monthly minimum air temperature (Tmin), and monthly total 

precipitation (P). All data are long term averages calculated from measurements taken 

between 1950 and 2000. The climate data is given on a 30 arc second global grid 

obtained by interpolating measurements from a world-wide network of climate stations. 

 

 
 

Figure 1. Difference between Euclidean distance (A) and DTW distance (B). 

 

A local climate is defined as a 12-months-long time series at a single grid cell. The 

data is corrected to remove phase shift caused by sun position change during the year. 

The DTW algorithm calculates the distance between any two local climates. DTW is 

calculated using normalized data and modified to yield results in a range 0 to 1. The 

difference between Euclidean distance and DTW distance (Fig.1) is that DTW 

synchronizes two time series thus finding two local climates similar even if there is some 

time shift in their variability. DTW powers both CS and CC.  

3. Climate Search  

CS works on the principle of query-by-example, a user identifies a location, and a local 

climate at this location (a query) is compared to all other local climates in a grid using the 

DTW. The result is a grid of the same size as the data grid but storing the values of 

similarity between a query and local climates. Visualizing these values reveals a map 

showing similarity relations between the climate in the query location and climates in all 

other sites in the world. We have developed an internet application, Climate Explorer 

(ClimateEx), available at http://sil.uc.edu, which performs CS calculations and returns the 

climate similarity map. Fig.2 shows examples of climate search using ClimateEx for the 

following queries: New York, NY, Death Valley, CA, and Minneapolis, MN. ClimateEx 

takes about 40 sec to execute a query on the 30 arc second grid and to display the map.  
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Figure 2. Examples of climate search for indicated locations. Climate similarity is 

indicated by color gradient from red (high similarity) to yellow (low similarity). 
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4. Climate Classification  

To obtain a CC we first segment a grid into about 30,000 segments using a region 

growing algorithm. This is done in order to reduce the number of objects to be clustered 

and to assure spatial cohesion of climatic classes. We calculate a 30,000 by 30,000 

distance matrix between all segments using the DTW distance. Using this matrix a 

hierarchical clustering with Ward linkage is calculated. A number of clusters (climate 

classes) is a free parameter that needs to be selected. We have selected 31 classes, the 

same number as in the KG classification. Fig.3 (top panel) shows the resultant CC with 

different colors (see insert legend) indicating spatial extent of each climatic class. The 

meaning of these classes has to be assigned on the basis of the average values of Tave, 

Tmax, Tmin, and P over an extent of each class.  This data mining-based CC could be 

compared with the KG classification (Fig.3 bottom panel). KG classes have been a priori 

interpreted by the design of the classification; for their meaning see the legend in Kottek 

et al. (2006).  
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Figure 3. (Top) Climate classification using a data-mining method presented in this 

paper. (Bottom) Climate classification using the Köppen–Geiger method based on 

heuristics. 

 

5. Conclusions  

Our proposed method of CC is a step forward in an effort to study spatial regionalization 

of world climates using data mining approaches. The result of the classification (Fig.1 top 

panel) shows an overall similarity to a classic KG classification but also displays some 

notable differences. This is not surprising as the assumptions behind each classification 

are different. KG classification implicitly assumes that vegetation is a function of climate 

so a design of the KG classifier is tied to observed spatial variability of vegetation types. 

Our classification is based purely on climatic data with no ties to vegetation.  The 

observed differences in climate maps suggest that spatial changes in vegetation types 

cannot be explained by means of climate variability alone. 

CS is a new analytical tool for custom made investigations of climate similarities. It 

yields results which are much more sensitive than a global CC which digitizes all 

climates in just few categories. CS is not restricted to global exploration (like in the 

examples given in Fig.1) but can also be used to explore regional differences in climate. 

Examples include delineation of climate changes due to rising elevation (valleys vs. 

ridges) and delineation of local microclimates.  

In the present implementation of our method all four climatic variables (Tave, Tmax, 

Tmin, and P) contribute to the DTW with the same weight which skews the results toward 

temperature-centric classification and search. Further research will experiment with 

different ways including giving equal weight to precipitation and all temperature 

variables taken together.  
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