Segmentation of WorldClim dataset reveals new insight into spatial variability of global climate

Pawel Netzel and Tomasz Stepinski

Space Informatics Lab, University of Cincinnati sil.uc.edu

GeoComputation 2017, Leeds, UK

What is global climate regionalization?

Global climate regionalization aims at delineation of mutually exclusive land units in a way that maximizes the intra-unit climate homogeneity and inter-unit climate disparity.

Why is it important?

Köppen-Geiger vs. clustering

Köppen-Geiger

>100 years old scheme

based on vegetation types as proxies for climate

boundaries between units expressed in climatic variables

used by everybody

***** 4 9 7 10 13 12 11 8 6 3 5 2 1 Netzel & Stepinski (20160, J. Climate, 29(9), pp. 3387–3401

clustering climate data

uses global gridded climate data, local climate = time series of local values of temperature and precipitation.

utilizes dissimilarity measure between time series

Uses clustering algorithm to obtain land units

Why Köppen-Geiger and clustering give similar results and why clustering is not the best datadriven method to regionalize global climates?

Köppen-Geiger

clustering climate data

Köppen-Geiger and clustering methods result in similar regionalizations of global climates because researchers **assume** the number of clusters to be **equal** or similar to the number of classes in the KG classification.

Clustering **does not ensure** that different clusters have the same level of homogeneity of local climates – **some clusters maybe more climatically homogeneous than others.**

There is no way to determine the "**correct**" number of clusters.

We didn't gain much **new knowledge** from clustering than we have already known from the100 years old heuristic regionalization.

Climate segmentation

image segmentation

climate segmentation

The result of grid segmentation is a set of segments that collectively cover the entire grid. Cells in a segment are similar. Adjacent segments are different.

Climate segmentation vs. clustering

issues	clustering	segmentation
numerical representations of climate	as bivariate time series	as bivariate time series
dissimilarity measure	dynamic time warping (required)	time-shift invariant Euclid. distance
homogeneity	different clusters are characterized by different climate homogeneities	all segments are characterized by the same level of homogeneity
map units	non-contiguous	contiguous
algorithm	Partitioning Around Medoids (PAM) clustering (slow)	Fast Scan segmentation (fast)

Global climate data

weather stations collect data

Long term data averages of monthly variables:

temperature precipitation maximum temperature minimum temperature

A climate for a given grid cell is mathematically represented by a bivariate cyclic time series C = $\{(T^1, P^1), ..., (T^{12}, P^{12})\},\$ where the time series progresses through 12 months. \downarrow

Global gridded climate data We use WorldClim monthly sum of precipitation (P) and average temperature (T) at 2.5 arc second (~5 km at the equator) www.worldclim.org/

Climate variables vs. climate

Climate: the statistics of weather over long periods of time. This is **not an actionable** definition.

To compare climates in two places patterns of **climatic variables** (for example, temperature, precipitation) are compared **separately**, but it would be better to compare climates **as single entities**.

We use a mathematical model (a bivariate time series) that **joins** temperature and precipitation into a single entity called a "**climate**". This allows us to calculate **a single-valued dissimilarity** between two climates.

An analogy: In relativistic physics the space-time is a mathematical model that **joins** space and time into a single idea called a **continuum**. This allows calculating a single-valued distance between points in space-time

Climate dissimilarity measures

Euclidean distance is sufficient in segmentation because only climates in geographically restricted locations are compared.

We use an improved "time-shift invariant" version of Euclidean distance

Netzel & Stepinski (20160, J. Climate, 29(9), pp. 3387–3401.

DTW stretches or compresses two time series which are similar but locally out of phase to calculate **an optimal** match between them.

DTW is necessary in **clustering** because climates from **far away** locations (for example, at different hemispheres) need to be compared.

Segmentation of global climate

Background Köppen-Geiger

Af - tropical rain forest AM - tropical monsoon AW - tropical savnna BW - arid desert BS - arid steppe CS -temperate dry summer CW - temperate dry winter Cf - temperate no dry season DS - continental dry summer DW - continental dry winter Df - continental no dry season ET - polar tundra

First observations

Climate changes on **smaller** spatial scale than indicated by Köppen-Geiger (especially in tropics)

In some regions segments lines are predominantly horizontal (artifact of the Fast Scan algorithm)

Algorithm: Fast Scan Internal dissimilarity: 0.11 External dissimilarity: 0.37 Segments: 20,488 Average segment area: 6700 km²

Climate dissimilarity in context

Dissimilarity of climate in London to climates in cities located in the same segment

D(London,Bath)=0.29 D(London,Leicester)=0.11 D(London, Leeds)=0.32 D(London,Edinburgh)=0.33 D(London,Aberdeen)=0.34

Dissimilarity of climate in London to climates in cities located in different segments

Cester D(London,Truro)=0.70 D(London,Haverfordwest)=0.45 D(London, Oswetry)=0.40 D(London,Lancester)=0.70 D(London,Glasgow)=0.73 D(London, Ford William)=1.00

http://sil.uc.edu/webapps/climateex

Interpreting results of segmentation

Differences in spatial variability of climate shown by segmentation and Köppen-Geiger may be surprising.

They stem from **differing definitions** of climate.

Köppen-Geiger – determined by vegetation zones

Segmentation – determined by how similar the **climates-astime-series** are. Largest differences between segmentation and Köppen-Geiger are when:

Climates in segments differ by precipitation range

Southeast China (green = Köppen-Geiger climate Cf – temerate without dry season)

Climates in segments differ by precipitation and temperature ranges

Southeast India (red = Köppen-Geiger climate Aw – tropical, savanna, wet)

In mountainous areas

Columbian Andies (green = Köppen-Geiger climate Cf – temperate without dry season)

Climates differ by precipitation

Map of climates relative to Ganzhou

Map of climates relative to Shangrao

Climates differ by precipitation and temperature

Map of climates relative to Chandrapur

Red – Aw = tropical, savanna, dry

Map of climates relative to Latur

Climates differ in mountainous areas

Map of Köppen-Geiger

Green – Cf = temperate without

Map of climates relative to Rionegro

dry season In mountainous areas climate changes on small spatial scales. Köppen-Geiger classification puts two towns Rionegro and Yaramul in the same climate class (Cf) but the two climates differs a lot in precipitation during the wet season. Also note difference between and climates form climates in southeastern China also labeled as Cf by Köppen-Geiger

climates

Regionalization of climates: KG vs. segmentation

issues	Köppen-Geiger	segmentation
Climate definition	Broad, empirical and descriptive, does not take progression of seasons into account	Specific, takes into account progression of seasons and values of temperature and precipitation
Climate regions	Generally large, give qualitative description of global climate distribution	Sometimes large when there is small and gradual climate gradient. Generally small, give quantitative description of local climates
Notion of quantitative and single valued climate similarity	Does not exist. Climate is divided into 13 classes which are grouped into 5 larger classes	Numerical similarity value can be calculated between any two climates. Web exploration tool available at http://sil.uc.edu/webapps/climateex
Are climates in a single region highly similar	No – most of the time	Yes - always

Application: Map of climates in UK

According to Köppen-Geiger the entire UK has a single climate – Cf.

Using global climate segmentation we can derive **more specific** map of climates in UK.

There are **nine** segments in UK, which we can optionally group into **three climate classes**

Conclusions

- Segmentation of global climate yields a detailed map of regional climatic land units.
- A combination of global extent and high spatial precision is what sets segmentation technique apart from the Köppen-Geiger classification and climate clustering.
- At present segmentation yields the best regionalization of terrestrial landmass into land units of homogeneous climate.
- Whereas Köppen-Geiger provides a first order qualitative information about climatic zones, segmentation provides quantitative delineation of climatic land units.
- Using segmentation-generated regionalization detailed maps of climatic land units in smaller regions (see the UK example) may be produced via optional classification of segments.