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Abstract

We introduce landscape similarity - a numerical measure that assesses affinity between two landscapes on the basis
of similarity between the patterns of their constituent landform elements. Such a similarity function provides core
technology for a landscape search engine - an algorithm that parses the topography of a study area and finds all places
with landscapes broadly similar to a landscape template. A landscape search can yield answers to a query in real
time, enabling a highly effective means to explore large topographic datasets. In turn, a landscape search facilitates
auto-mapping of physiographic units within a study area. The country of Poland serves as a test bed for these novel
concepts. The topography of Poland is given by a 30 m resolution DEM. The geomorphons method is applied to this
DEM to classify the topography into ten common types of landform elements. A local landscape is represented by
a square tile cut out of a map of landform elements. A histogram of cell-pair features is used to succinctly encode
the composition and texture of a pattern within a local landscape. The affinity between two local landscapes is
assessed using the Wave-Hedges similarity function applied to the two corresponding histograms. For a landscape
search the study area is organized into a lattice of local landscapes. During the search the algorithm calculates
the similarity between each local landscape and a given query. Our landscape search for Poland is implemented
as a GeoWeb application called TerraEx-Pl and is available at http://sil.uc.edu/. Given a sample, or a number of
samples, from a target physiographic unit the landscape search delineates this unit using the principles of supervised
machine learning. Repeating this procedure for all units yields a complete physiographic map. The application of this
methodology to topographic data of Poland results in the delineation of nine physiographic units. The resultant map
bears a close resemblance to a conventional physiographic map of Poland; differences can be attributed to geological
and paleogeographical input used in drawing the conventional map but not utilized by the mapping algorithm.

Keywords: Landscape similarity, Landscape search, Physiographic mapping, Pattern recognition, Supervised
classification, Web application

1. Introduction

Regionalization and mapping are the core elements
of geomorphologic analysis. Traditionally, these tasks
are carried out by analysts who rely on their visual per-
ception of data and expert knowledge to delineate units
of land surface within a given study area. Possible tar-
get units of mapping include – in order of increasing
complexity – landform elements, landforms and land-
scapes (see Minar and Evans (2008) for a description
of the hierarchical partitioning of land surfaces). With
the increasing availability of medium-to-high resolution
DEMs covering the entire land surface of the Earth as
well as surfaces of other planets and because of the
slowness, expense, and subjectivity of manual analysis,
there is a significant interest in automating the process

of geomorphologic mapping.

In this paper we present a novel methodology for the
automated delineation of landscape types within a study
area. To the best of our knowledge no previous work has
addressed this issue directly by taking into account the
complexity of landscape units as described, for exam-
ple, by Minar and Evans (2008). Instead, previous work
concentrated on the automatic classification of land-
forms – surface units of lesser complexity then land-
scapes. In practice, however, the methods employed
in previous works tended to generalize the notion of
“landform” to the point where the resultant maps (Iwa-
hashi and Pike, 2007; Dragut and Eisank, 2012) delin-
eate units that could be best described as physiographic
units. Therefore, we will be able to compare the results
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of our mapping methodology with the results of previ-
ous auto-mapping techniques.

All previous methods share a common framework.
They are classification schemes that assign a label to
an areal unit on the basis of geomorphometric vari-
ables (Evans, 1972; Pike, 1988; MacMillan et al., 2004;
Olaya, 2009) and/or their statistics calculated from
DEM values at a given unit and/or from its immedi-
ate neighborhood. The first such classification scheme
was devised by Hammond (1954) and was later imple-
mented as a computer algorithm (Dikau et al., 1991;
Gallant et al., 2005). Other landform classification
schemes were proposed by Meybeck et al. (2001) and
Iwahashi and Pike (2007) using different combinations
of geomorphometric variables. Recently, Dragut and
Eisank (2012) introduced the concept of Object-Based
Image Analysis (OBIA) to classification of landforms.
In their method a DEM is first segmented into multi-cell
units which are homogeneous with respect to geomor-
phometric variables, and those units, rather then DEM
cells, are the objects of classification.

The approach presented in this paper is based on dif-
ferent principles. We start with the concept of similar-
ity between landscapes. Using this concept we design
a computational framework for a landscape search and
for auto-mapping of landscape types or physiographic
units. According to the taxonomy of Minar and Evans
(2008) landscapes are patterns of landforms which in
turn are composites of landform elements. We skip the
middle level of this hierarchy and consider landscape to
be a pattern of landform elements over a site of inter-
est. A similarity between two landscapes is defined as
a single number that encapsulates all aspects of compo-
sitional and configurational alikeness between two pat-
terns of landform elements.

Despite the great variability of local landscapes
within a study area (a landscape at any specific site
is unique in its details), there are a limited number of
semantically different landscape types that can be dis-
cerned. We consider landscape types to be tantamount
to physiographic units – regions of the study area hav-
ing internal uniformity of landscape and clearly differ-
ent from surrounding regions. A measure of similarity
between landscapes enables the algorithmic identifica-
tion of landscape types. The landscape search engine is
an algorithm which, given a sample landscape (a query),
parses the entire study area and retrieves sites having
landscapes similar to that of the query. The set of all re-
trieved landscapes constitutes the landscape type exem-
plified by the query. An auto-mapper of physiographic
units is an algorithm which delineates a study area into
an exclusive and exhaustive set of physiographic re-

gions.
Note that an auto-mapping algorithm that utilizes

our framework could be based on the machine learning
principles of either unsupervised learning (Duda et al.,
2001) or supervised learning (Mehryar et al., 2012).
An unsupervised learning algorithm delineates physio-
graphic units without any guidance from an analyst by
clustering similar landscapes. The number and charac-
ter of these units emerge from the data and need to be in-
terpreted afterward. An unsupervised learning mapping
approach is most useful for the exploration of a study
area with little prior knowledge about its physiography,
like, for example, a planetary surface (Bue and Stepin-
ski, 2006). A supervised learning algorithm delineates
study area into an a priori known set of units on the
basis of landscape samples provided by an analyst. A
supervised approach is most useful when there is some
prior knowledge about the physiography of a study area
but objective delineation of units is desired. Note that
the previous auto-mapping methods mentioned above
are often referred to as “unsupervised” because they re-
quire no interaction between an algorithm and an ana-
lyst. However, they are not based on either supervised
or unsupervised machine learning principles. They clas-
sify cells/segments into a priori defined landform types
(a supervised aspect) but numerical criteria for belong-
ing to a given type depends on the statistics of the data
(an unsupervised aspect).

In this paper we focus on a supervised variant of our
auto-mapping algorithm with the delineation of phys-
iographic units achieved by repeated application of the
landscape search algorithm. The methodology pre-
sented here is general and applies to any study area for
which a DEM of sufficient quality is available. We illus-
trate the steps in our method using an entire territory of
the country of Poland (represented by a 30 m resolution
DEM) as a study area.

2. Analytical and computational framework

Because our methodology consists of several compo-
nents, we start by describing its overall framework – a
logical structure of several separate concepts and their
computational implementations that together underpin
our approach to landscape retrieval and mapping.

A schema of our analytical framework is shown in
Fig. 1. The topography of a study area (Fig. 1A) is used
as input data. Because we are concerned with the search
for and mapping of spatially extensive areal units (of the
size of physiographic units), a study area would typi-
cally cover a region which is very large in comparison
to the resolution of a DEM. In this paper we consider
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Figure 1: Schema showing an analytic framework of our methodology.

a study area containing the entire country of Poland
at 30 m resolution (see Section 3 for details). The
first element of our method is an automatic mapping
of landform elements from a DEM (A→B transition on
Fig. 1). This step could be achieved using several differ-
ent methods (Wood, 1996; Dikau et al., 1995; Jasiewicz
and Stepinski, 2013a) developed to classify DEM cells
into a small number of categorical labels indicating an
elementary form of a local surface. Extending our pre-
vious work we use the geomorphons method (Jasiewicz
and Stepinski, 2013a) that allows for a direct, single-
step classification of landform elements. The geomor-
phons method provides a fast and robust tool for achiev-
ing the A→B transition. It classifies DEM cells into
the ten most common landform elements: flat, peak,
pit, ridge, valley, shoulder, footslope, spur, and hollow
(Fig. 1B). We have computed 30 m resolution maps of
landform elements using the geomorphons method for
Poland and, additionally for the United States. These
maps can be explored and compared to a hillshade ren-
dition of topography using our GeoWeb tools available
at http://sil.uc.edu/.

The second element of our method is the conver-
sion of a map of landform elements into a lattice of
local landscapes (B→C transition on Fig. 1). We op-
erationally define a local landscape as a square-shaped
tile cut out of the map of landform elements. The size
of a tile should be large enough so that local landscapes
contain non-trivial mosaics of landform elements, but
small enough to ensure a diversity of landscape types in

the study area. The tiles are arranged in a lattice of local
landscapes and together they cover the entire study area
(Fig. 1C).

An overall, quantitative measure of similarity be-
tween two landscapes is the key concept of our method-
ology. To the best of our knowledge this concept has
not been discussed with respect to its application to ge-
omorphology. However, it has been studied in the con-
text of landscape ecology (Wickham and Norton, 1994;
Allen and Walsh, 1996; Cain et al., 1997) where the no-
tion of landscape pertains to patterns of land use/land
cover (LULC) categories rather than to the patterns of
landform elements. There are two components of land-
scape similarity: (1) a concise numerical representa-
tion of landscape pattern hereafter referred to as a land-
scape signature (Fig. 1D) and (2) a similarity function
(Fig. 1E) that uses this representation to calculate a
number that encapsulates the overall degree of “alike-
ness” or affinity between two landscapes. In landscape
ecology, a signature is a vector of landscape indices
(O’Neill et al., 1988; Herzog and Lausch, 2001) and
the Euclidean distance is used as the similarity function.
Our choices for the landscape signature and similarity
function are different from those used in the LULC con-
text because the pattern characteristics of landform el-
ements are different from those of LULC patterns (see
details in Section 4).

The landscape search (Fig. 1F) utilizes a query-and
retrieval technique to find all local landscapes similar
to a sample landscape (also referred to as a “query”).
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A query doesn’t have to be one of the local landscapes
predefined by a lattice of tiles, and it doesn’t have to
be taken from the study area, however, in this paper all
queries are samples from the study area. The search is
performed by calculating the similarity between a query
and each of the local landscapes. The result of this
search is a “similarity map” (Fig. 1F) with locations
colored in accordance with their similarity to a query.
A landscape type exemplified by a query can be delin-
eated as a set of all locations having a similarity to the
query which is larger than a specified threshold.

Using several different templates and a repeated ap-
plication of the landscape search we partition the study
area into a set of physiographic units (Fig. 1G) corre-
sponding to landscape types exemplified by respective
templates. Using each template as a query we obtain a
set of similarity maps, which, when reconciled, yield a
single map of physiographic units (for details see Sec-
tion 6).

3. Study area

Our study area is the country of Poland. Poland is
a country in Central Europe located between latitudes
49◦ and 55◦ N and longitudes 14◦ and 25◦ E. Its surface
area is 312,685 km2. The territory of Poland exhibits
a number of different landscape types including coastal
plains in the northernmost part of the country, young–
undenudated and old–denuded post-glacial lowlands of
different ages in the northern and central parts, and up-
lands and mountains in the southern part. A color ren-
dition of Poland’s topography is shown in Fig. 2A.

A traditional physiographic map of Poland (hereafter
referred to as a “reference” map) has been obtained by
generalizing a physigraphic regionalisation of Poland
proposed by Kondracki (2002). The original Kondracki
map has been created manually on the basis of geomor-
phological as well as geological and paleogeographical
information and includes many units, some of them de-
lineated on the basis of regional position. The refer-
ence map shown in Fig. 1B delineates only 12 phys-
iographic units as described by its legend (Fig. 1C).
They include surfaces formed during the last glaciac-
tion (young morainic hills, young moraininc plateaus
and plains) and surfaces resulting from previous glacia-
tion morphogenesis strongly modified by denudational
process during the last glaciation (old morainic plateaus
and hills, old morainic plains and old moraninc plains
on older substratum). These units are frequently bun-
dled together as “lowlands” on less specific maps or
by global automatic classifiers based on geomorphome-
tric variables like those by Iwahashi and Pike (2007) or

Dragut and Eisank (2012). On the other hand, our land-
scape similarity-based methodology would be able to
map these units quite well using only topographic data
and without the benefit of additional information from
geology and paleogeography.

The topographic data for Poland is a 1” integer-
valued DEM (obtained from the Silesia University)
which we reprojected to the PUWG92 coordinate sys-
tem and converted by adaptive smoothing to a floating-
point terrain model with a resolution of 30 m/cell. Our
final DEM is 21,696 × 24,692 cells. The 30 m/cell cat-
egorical map of landform elements is calculated from
this DEM using the geomorphons method (Jasiewicz
and Stepinski, 2013a). This map was calculated using
the following values for the two parameters required
by the geomophons method: Search radius L =40
cells (1200 m), and Flatness threshold t =0.8 degree.
The geomorphons code is available for download from
http://sil.uc.edu/. The hillshade and the shaded relief of
the DEM, as well as the map of landforms elements,
are available for exploration using the GeoWeb tool
TerraEx-Pl available from the same website.

4. Landscapes similarity

Being able to quantify the overall similarity between
two landscapes using a single number is a key element
of our methodology. In both landscape ecology and ge-
omorphology landscapes can be considered as categor-
ical spatial patterns, suggesting that we can apply simi-
larity measures developed (Cain et al., 1997; Long et al.,
2010; Kupfer et al., 2012) for LULC landscapes to pat-
terns of landscape elements. However, this is not the
case as these two types of patterns have different char-
acteristics. While the most important discriminant be-
tween two LULC patterns is the presence or absence
of specific LULC categories, most terrain patterns con-
tain all categories of landscape elements. This follows
from the fact that terrain consists of a series of land-
form elements, for example: valley, slope, ridge, slope,
valley, etc. Thus, while LULC landscapes are predom-
inantly distinguished from each other on the basis of
land cover composition, terrain landscapes are predom-
inantly distinguished from each other on the basis of
their texture or the spatial configuration of their basic
elements. In addition, the nature of land surfaces dic-
tates that landscape patterns are dominated by just two
elementary forms: “flats” in the lowlands and “slopes”
in areas of higher relief. All other elementary forms,
such as peaks, pits, ridges, valleys, footslopes, hollows,
spurs, and shoulders are less abundant, but they are nev-
ertheless crucial for characterizing terrain texture. In
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Figure 2: Topography and physiography of Poland. (A) Topographic map of Poland. (B) Reference physiographic map of Poland
based on the Kondracki (2002) concept. (C) Legend for the reference physiographic map.

designing a quantitative measure of similarity between
landscapes the contribution of these landform elements
must be enhanced relative to their abundance.

In designing a landscape numerical signature we fol-
low principles established in the field of Content-Based
Image Retrieval (CBIR) (Gevers and Smeulders, 2004;
Datta et al., 2008; Lew et al., 2006) – another domain
where the issue of similarity between two rasters, in this
case images, has been studied. In CBIR a pattern sig-
nature is calculated as a histogram of a pattern’s ”prim-
itive features.” A histogram is a good choice for pattern
signature because of its rotational invariance; two pat-
terns rotated with respect to each other will have iden-
tical histograms. Primitive features are simple mea-
sures designed to provide small, local pieces of infor-
mation about a pattern. For example, a landform ele-
ment at a given cell could be a primitive feature, and a
histogram of all landform elements over the landscape
could be a landscape signature. Such signature would,
however, reflect only the abundance of landform ele-
ments in the landscape and would not characterize the
landscape well enough (see discussion above) for effec-
tive comparison with other landscapes.

We use pairs of neighboring cells as primitive fea-
tures as shown in Fig. 3A. This figure shows a small
(8×8 cell) map of landform elements. Each cell in
this map generates eight pairs which are shown by ar-
rows in the case of three cells selected as examples
(an 8-connected neighborhood is assumed). For exam-
ple, the leftmost of the three example cells shown on
Fig. 3A is labeled as “slope” and generates eight pairs:
three slope-slope pairs, four slope-footslope pairs and
one slope-channel pair. If a map of landform elements
maps C different elements, there are (C2 + C)/2 dif-
ferent possible types of neighboring cells. Because the
geomorphons-generated map has 10 different elements,

there are 55 different possible pairs of elements, exam-
ples include: flat-flat, flat-slope, slope-peak, etc.

The design of the landscape signature (first described
by Barnsley and Barr (1996) in the context of land
use reclassification) simultaneously encodes the com-
position and texture of the landscape in a simple his-
togram. (Note that this histogram contains the same in-
formation as a co-occurrence matrix (Haralick, 1986)).
Fig. 3B illustrates how two different landscapes (de-
picted by their maps of landform elements) are repre-
sented by histograms of cell-pair features. The legend
for Fig. 3A also applies to the maps shown in Fig. 3B.
Histograms of the cell-pair features have 55 bins, with
each bin height proportional to a number of cell-pairs
belonging to a cell-pair category as indicated by color
labels shown between the two histograms. The highest
bins usually correspond to pairs of same category cell-
pairs; they encode the composition of the landscape.
For example, histogram of landscape 1 is dominated
by flat-flat, slope-slope, and valley-valley bins, whereas
the histogram of landscape 2 is dominated by slope-
slope, valley-valley, and ridge-ridge bins. The bins cor-
responding to pairs of different cell categories encode
the texture of the landscape.

The similarity between two landscapes is calculated
using their signatures (histograms of features) and a
similarity (or a distance) function. Note that a “dis-
tance” is a measure of dissimilarity between two land-
scapes and is thus the reverse of similarity. Choosing
most appropriate similarity/distance function is largely
an empirical decision. Cha (2007) provides a com-
prehensive review of possible functions to calculate
the distance between two histograms. After extensive
experimentation with different similarity measures we
have observed that a modified Wave-Hedges similarity
function (Cha, 2007) measures similarity between land-
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Figure 3: Landscape numerical signature. (A) Graph explaining pairs of neighboring landform elements as pattern primitive features.
(B) Example of two landscapes and their corresponding signatures - histograms of primitive features.

scapes in a way that is most consistent with human per-
ception. Let A and B denote two landscapes and Ah and
Bh denote their corresponding signatures (histograms).
The similarity between these two landscapes is given by
the following formula:

sim(A, B) = sim(Ah, Bh) =
1
M

M∑
i=1

min(Ah
i , B

h
i )

max(Ah
i , B

h
i )

(1)

where M is the number of positions in both histograms
where at least one bin is non-zero and Ah

i and Bh
i are

the values of bins in the i-th position. This measure
takes into account only the cell-pair features that are
present in at least one of the two landscapes. It com-
pares each pair of corresponding bins separately by di-
viding a smaller bin value by its bigger counterpart. The
result is a number between 0 and 1. Where the value of
one of the bins is 0, there is no similarity with respect to
this cell-pair feature between the two landscapes. If the
values of both bins are identical, there is perfect similar-
ity with respect to that cell-pair feature between the two
landscapes. The overall similarity is an arithmetic aver-
age of all contributing similarities, its range is between
0 (no similarity between landscapes) and 1 (landscapes
are identical).

Note that in Eqn. (1) the contributions of all cell-pair
features to an overall similarity value are taken with the
same weight regardless of each feature’s abundance in
the landscape. This ensures that composition-related
features (pairs of same category cells) and texture-
related features (pairs of different category cells) have
the same chance to contribute to the overall similarity
value despite the dominance of composition-related fea-
tures in all realistic histograms (see Fig. 3B). It also
ensures that landscape similarity will not be heavily
skewed by the relative abundance of the most common
landscape elements – flat and slope. Other potential

similarity functions, like the Euclidean distance or the
Jensen-Shannon distance, are dominated by similarity
of the most abundant features. As a result, when those
measures are applied to, for example, two landscapes
both dominated by the flat element but with different
secondary elements, they would yield a high value of
similarity by focusing on the fact that both landscapes
are basically flat. Frequently, this result will not corre-
spond to the perception of an analyst for whom different
departures from flat terrain are associated with signifi-
cant dissimilarity between the two landscapes. How-
ever, the application of the similarity function given in
Eqn. (1) to this example would result in lower value of
similarity, more in agreement with how a human ana-
lyst would determine the similarity between those two
landscapes.

5. Landscape search

The purpose of a landscape search engine is to en-
able the discovery of locations containing landscapes
similar to a specified landscape of interest. Like other
more familiar search engines it works on the principle
of query-and-retrieval. However, the spatial aspect of
topographic data calls for the presentation of search re-
sults in a manner that is different from those employed
in non-spatial search engines. For example, an Internet
search engine returns only several results (web pages,
images) which represent the “best-fit” results to a given
query. In contrast, the output of a landscape search en-
gine is a similarity map which visually shows a degree
of similarity to a query at all locations throughout the
entire study area, thus providing geospatial context.

Fig. 4 illustrates the principle of the landscape search.
Fig. 4A shows the topographic map of Poland with a
green-to-brown color gradient illustrating low-to-high
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Figure 4: Concept of landscape search. (A) Topographic map of Poland. (B1) Shaded relief of query landscape. (B2) Map of
landform elements of query landscape (see Fig. 5 for legend). (C) Similarity map. See main text for additional informations.

elevations. The small black square in the lower-right
portion of the map indicates the location of a query.
Fig. 4C shows the color-coded similarity values be-
tween that query and all local landscapes covering the
entire territory of Poland. Locations on the similarity
map which are shown in red are similar to the query;
they are located along the southern border of Poland
within a physiographic unit of medium mountains (see
Fig. 2). Map locations shown in green are completely
dissimilar to the query and correspond to lowlands. Map
locations shown in various shades of yellow are also dis-
similar to the query, but less so than the locations shown
in green; they correspond to highlands and low moun-
tains in the south and young morainic hills in the north.

Implementation of the landscape search in software
follows our earlier design (Jasiewicz and Stepinski,
2013b; Stepinski et al., 2014) meant for searching the
National Land Cover Database (NLCD) for U.S. loca-
tions having similar patterns of LULC. We use an over-
lapping sliding window approach. A square grid with
a resolution of k raster cells is superimposed over the
entire spatial extent of the study area. This grid forms a
basis for the similarity map resulting from the query.
Thus, the resultant similarity map has a resolution k
times coarser than the map of landform elements. We
will refer to cells of similarity map as “super-cells.” The
query is executed by means of exhaustive evaluation -
the value of landscape similarity is calculated between
the query tile (see section 2 to recall a definition of the
tile) and all the local tiles assigned to the similarity grid.

The size of a tile is N×k. If N = 1 the tiles are identi-
cal to super-cells and they don’t overlap with neighbor-
ing tiles. However, in general, it is preferable to con-
sider overlapping tiles (N > 1) to better accommodate
the continuous character of landscape. In this paper we

use k = 50 and N = 10 resulting in tile size of 15 km
× 15 km and a similarity map with a resolution of 1.5
km. Fig. 5 illustrates the relationship between tiles and
super-cells. Fig. 5A shows the 30 m resolution map of
landform elements. The purple square denoted Q indi-
cates a 15 km × 15 km tile containing the landscape to
be used as a query. Fig. 5B shows the 1.5 km resolu-
tion similarity map. The clearly visible pixelation in-
dicates super-cells; the color of each super-cell reflects
the value of similarity between the query and the land-
scape contained in the 15 km × 15 km tile centered on
this super-cell. The three examples of super-cell loca-
tions are labeled L1, L2, and L3 respectively. These
super-cells are outlined by a thin dashed line and their
corresponding tiles are outlined by a thick solid line.
For example, a similarity value stored in the super-cell
L1 indicates the similarity between the landscapes con-
tained in tiles Q and L1.

In order to maximize the utility of the landscape
search we have implemented it as a modern Internet ap-
plication (called TerraEx-Pl) running in a web browser.
TerraEx-Pl, available at http://sil.uc.edu/, is a comput-
erized map application with all functionalities available
through an active web page (as Google Maps). It en-
ables real-time landscape searches to be performed over
the country of Poland. The resultant similarity maps can
be downloaded as GeoTiff files for offline analysis.

6. Delineation of physiographic units

We now demonstrate how to divide the territory of
Poland into an exclusive and exhaustive set of phys-
iographic units using a supervised learning approach
that utilizes the landscape search method described in
the previous section. Table 1 gives a description of
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nine physiographic units we have selected for mapping.
They correspond to the 12 regions presented on our ref-
erence physiographic map (Fig. 2B). For auto-mapping
we did not select regions from Fig. 2B which refer to
their genesis rather than physiography as our method
works (by our choice and design) only on the basis of
landscape morphology alone. Thus, “broad river valleys
and pradolinas”, “costal plains”, and “flat boggy plains”
are combined into “flat plains”, and “old morainic plains
and hills” and “old morainic plains and hills on older
basement” are combined into a single unit. Also “local
depressions” are not selected as a unit to be mapped, but
a new unit “inland dunes” is added.

Following the methodology of supervised learning
we selected a number of template landscapes for each
unit based on our expert knowledge. The third col-
umn in Table 1 shows a number of landscapes used
as templates for a given unit. Altogether, 64 template
landscapes where selected to represent the characteris-
tic landscapes of various units. Locations of template
landscapes and their samples are shown in Fig. 6.

We execute the landscape search with each template
serving in turn as a query. The result is 64 similarity
maps, each showing the spatial distribution of similar-
ity to the given querying. It could be expected that
similarity maps stemming from the set of queries rep-
resenting a single unit should be very similar to each
other. This is certainly the case for some sets of queries.
For example, similarity maps for all 11 templates rep-
resenting medium mountains (MM) are much the same.
This means that landscape samples selected for medium
mountains have all very similar terrain texture and that
the entire unit of medium mountains has relatively uni-

form texture. On the other hand, similarity maps for
12 templates representing young morainic plateaus and
plains (YMPP) show marked differences. This is be-
cause the set of YMPP landscape samples displays some
variance in terrain texture. This follows from the fact
the terrain texture across the YMPP unit is relatively
less uniform than, for example, the terrain texture across
the MM unit. The fact that some units display an inter-
nal variance of patterns is the reason for using a set of
different landscape samples instead of a single sample
to represent a “typical” landscape.

We average all similarity maps stemming from tem-
plates representing a single unit. Because the values on
any similarity map range from 0 to 1, the average maps
also have the same range of values and can be inter-
preted as a map showing the likelihood of local land-
scapes belonging to a given unit. The average sim-
ilarity (likelihood) maps for all nine units are shown
in Fig. 7A. The most distinct physiographic units are
those for which likelihood maps are dominated by high
(red) and low (green) values, thus clearly delineating a
unit from the rest of the study area. Medium moun-
tains (MM), low mountains (LM) and young morainic
hills (YMH) are such units. A unit for which the like-
lihood map shows a lot of medium values marked by
orange and yellow colors is less crisply defined. Our
algorithm indicates that extended portions of the study
area could be assigned to such unit but only with like-
lihood that is relatively small. Highlands (HL), young
morainic plateaus and plains (YMPP), dunes (DN), old
morainic plateaus and hills(OMPH), and old morainic
plains (OMP) are examples of such units. The likeli-
hood map for flat plains (FP) unit does not show high

8



Table 1: Definitions of physiographic units

Name Abbreviation # of samples Description
Medium mountains MM 11 Areas above 1000 m asl, medium dense texture and high, sharp

relief, regular dendritic pattern, no flat areas.
Low mountains LM 5 Areas between 500 and 1000 m asl, dense texture, medium and

sharp relief, regular dendritic pattern, no flat areas, limited amount
of slopes.

Highlands HL 9 Areas between 300 and 500 m asl, dense texture, medium and high
relief, regular dendritic pattern, limited flat areas.

Young morainic hills YMH 10 Areas between 100 and 300 m asl, medium density texture, high
relief and irregular pattern, limited flat areas.

Young morainic plateaus
and plains

YMPP 12 Areas below 100-150 m asl, low and medium density texture, ir-
regular pattern, significant amount of flat areas.

Inland dunes DN 3 Elevation mostly below 100 m asl, very high density of texture,
characteristic pattern, no flat areas in dune fields.

Old morainic plateaus and
hills

OMPH 4 Areas between 100 and 300 m asl, low density texture, low and
smooth relief, regular dendritic pattern, significant amount of flat
areas.

Old morainic plains OMP 5 Areas between 100 and 300 m asl, low density texture, very smooth
or flat relief, large amount of flat areas.

Flat plains FLP 7 Flat areas with very small addition of other forms.

MM

LM

HL

YMH

YMPP

DN

OMPH

OMP

FLP

MM LM HL

YMH YMPP DN

OMPH OMP FLP

A B

1000 200 300 400 km

Figure 6: A set of template landscapes. (A) Landform elements map of Poland with locations of template landscapes indicated by
squares having colors corresponding to units they exemplify (see legend to the right). (B) Nine sample landscapes (shown as maps
of landform elements), each representing one of nine units.

values at all. This does not mean that local sites having
flat landscapes are not similar to each other, but rather it
reflects the nature of our similarity function (Eqn. (1))
that shows relatively smaller values of similarity be-
tween landscapes dominated by a single landform el-
ements (flat) as it concentrates on differences between
trace elements.

In the final step all nine likelihood maps are com-
bined. This means that every super-cell temporarily
stores nine values of likelihood, one for each unit. These
values indicate the likelihood that a given super-cell be-
longs to each of the possible units. In order to produce
a physiographic map of Poland we disambiguate these
nine possibilities by assigning to a super-cell a unit la-
bel corresponding to the largest likelihood. This map is

shown in Fig. 7B; it represents the final product of our
calculations.

This generated map can be compared to the refer-
ence map (Fig. 2B) although we stress that reference
map does not represent “ground truth” in the machine
learning sense. Instead both maps are different mod-
els of reality made using different methodologies and
different means. The reference map, like most man-
ually created maps, delineates regions by delineating
their boundaries. The homogeneity of landscape pat-
terns within a boundary is implicit. Our algorithm de-
lineates units by establishing regions with homogeneous
landscape patterns. The boundaries between units are
implicit. Nevertheless, the two maps tell the same story.
The landscape types in Poland are arranged in a pat-
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Figure 7: Delineation of physiographic units. (A) Spacial distributions of probability of belonging to a physiographic unit as
indicated by a label. (B) The final, algorithm-delineated map of nine physiographic units across Poland.

tern of latitudinal belts (Lencewicz, 1937; Galon, 1972;
Kondracki, 2002). These belts are the result of the gen-
eral relief of Poland, with mountains and highlands in
the south and lowlands in the middle and the north.
Because the overall pattern of uplifted areas depends
mostly on orography and its geological structure, the
geomorphometry of lowlands are the result of the di-
minishing southward extent of successive Pleistocene
glaciations (Marks, 2005). Every glacial epoch left sev-
eral to hundred meters of new deposits, which after re-
treating revealed new, immature surfaces which became
targets of denudation processes (Dylik, 1952, 1956).
The overall differences between the two maps are minor
and can be attributed to geological and paleogeograph-
ical inputs that went into the construction of reference
map but were intentionally omitted from our algorithm
whose goal was landscape comparison on the basis of
terrain patterns alone. For example, the region located
just south of the Notec pradolina in western Poland is
classified exclusively as the YMPP unit on the refer-
ence map (Fig. 2B) up to the maximum extent of last
glaciation (Marks, 2005). The same region is divided
into several units (YMPP, YMH, DN, OMPH) on our
map (Fig. 7B) because of differences in topography. Lo-
cally, the boundaries between corresponding units from
the two maps are somewhat shifted, but the relative mer-
its of specific delineations need to be discussed on a site-
by-site case.

7. Discussion and Conclusions

In this paper we presented a new methodology en-
abling the quantitative comparison of landscapes, a
search for landscapes similar to a given template, and,
finally, the auto mapping of landscape types (or phys-
iographic units). This methodology extends the field of
geomorphometry - the science of quantitative land sur-
face analysis - into the realm of content-based retrieval.
Such an extension is significant because it opens up sev-
eral new, practical possibilities.

First, our methodology provides for knowledge dis-
covery through geomorphometry, as it makes possi-
ble a convenient exploration of very large topographic
datasets (DEMs) in real time. Note that this is com-
pletely different from the capacity to search a DEM
and its derivatives by attribute value using SQL queries
built into most GIS systems. Whereas SQL queries
retrieve individual DEM cells fulfilling predefined nu-
merical conditions, our system retrieves entire land-
scapes on the basis of their similarity to a template.
The only analog to our methodology is Content-Based
Image Retrieval (CBIR) (Gevers and Smeulders, 2004;
Datta et al., 2008; Lew et al., 2006) - the process of re-
trieving desired images from a large collection on the
basis of features such as color, texture and shape that
can be automatically extracted from the images them-
selves. In our method a local landscape or tile plays
the role of an image and the set of all tiles covering the
study area plays the role of a large image collection.

There are some important differences between the
CBIR and our method. The most important difference is
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the expected outcome. The CBIR is expected to serve as
an object-in-image retrieval system - a search is consid-
ered successful if retrieved images contain objects of in-
terest. This expectation is very difficult to meet because
a significant amount of high-level reasoning about se-
mantic content of an image is required. However, avail-
able retrieval algorithms match images on the basis of
primitive image features (much like in our method) that
rarely, if ever, reflect the semantic meaning of an im-
age. Thus, a general purpose CBIR often yields dis-
appointing results (Hanjalic et al., 2008). On the other
hand, our method serves as a pattern retrieval system -
a search is considered successful if retrieved locations
contain patterns of interest. This expectation is easier
to meet because the relationship between primitive fea-
tures and pattern is much closer than the relationship
between primitive features and semantical objects. As a
result our system provides a much higher level of user
satisfaction and is ready to be used in practice. An ad-
ditional reason our method performs quite well is be-
cause it is customized specifically for topographic pat-
terns. A query is compared to scenes which are all
landscapes. Because all landscape-derived patterns ful-
fill nature-imposed conditions our method avoids situ-
ations frequent in the domain of natural images, where
scenes having patterns corresponding to very different
landscapes have, nevertheless, very similar histograms
of features.

Another difference between our method and the
OBIR is the spatial character of landscape. Because of
this character we are compelled to present the results of
our search as a similarity map that returns not only the
closest matches but also puts them in spatial context.
This means that an execution of every query requires an
exhaustive evaluation of similarities between the query
and all other local landscapes. In contrast, the retrieval
of similar images can be achieved by taking advantage
of prior indexing. Despite the considerable computa-
tional cost of executing landscape search queries, our
implementation (TerraEx-Pl) works in real time.

What are the potential uses for landscape search? The
most obvious use is to identify locations having land-
scapes similar to a local landscape of interest. An exam-
ple is provided by inland dune fields - a landscape that
is quite rare in Poland and restricted to small patches of
land. Using the TerraEx-Pl application a user can take
a particular local dunes field (which happens to have a
location known to the user) as a query and search for
other potential dune fields across Poland. Such a search
returns a similarity map that indeed identifies other dune
fields. It also indicates a more extensive region showing
elevated, but not high similarity to a dune query. The

integrated environment of TerraEx-Pl allows for visual
examination of this region. This underlines a human-
computer interaction aspect of our landscape search ap-
plication. The search algorithm application acts as a
recommender, but a user has an ability to check these
recommendations. Another potential use is the delin-
eation of a region occupied by a certain landscape type.
This applies to landscapes with relatively large spatial
extent, like, for example, medium or low mountains dis-
cussed in Section 6. Both of these uses are quite pow-
erful in application to Poland, but they would be even
more powerful in application to larger datasets, such
as the entire world, represented by the SRTM-derived
DEM. The construction of such a world-wide landscape
search engine is our ultimate goal.

Beyond landscape search, our method enables the
auto-mapping of landscape types or physiographic
units. Physiographic maps are important because they
provide insight with regard to regional land-use plan-
ning, interpretation of landscape evolution, and the ef-
fects of physiography on other aspects of the surficial
and ecological environment (Good et al., 1993; Martin-
Duque et al., 2003; Daly et al., 2008; Fearer et al., 2008;
Johnson and Fecko, 2008; Gawde et al., 2009). Because
of their importance physiographic maps are developed
by government-sponsored geological surveys at signif-
icant cost and effort. Our method is able to offer fast,
custom physiographic mapping with minimum effort so
that maps can be generated on demand by an end user.

In this paper we have demonstrated the process of
physiographic map generation using a supervised ap-
proach. This choice was made primarily to demonstrate
that our similarity measure is in agreement with human
perceptions of landscape similarity. The performance of
typical CBIR systems is tested using so-called ground
truth set of images. These are images pre-labeled for
content by an analyst. A system is considered to have
a good performance if a query with label A retrieves
predominantly images which are also labeled A. This
standard performance test is not viable in the context of
landscape similarity because it is difficult-to-impossible
to label tiles of local landscapes with a small number
of concise labels with clear semantic meaning. Instead,
we test the design of our similarity measure implicitly
by generating a physiographic map and comparing it to
the manual map of the same set of units. Good agree-
ment between the maps implies that landscapes similar
according to our numerical measure are also similar ac-
cording to human perception.

Auto-mapping of landscape types can also be per-
formed using an unsupervised approach. Unsupervised
approach uses the similarity measure but does not uti-
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lizes landscape search. Instead, regionalization of the
study area with respect to landscape patterns is per-
formed using either a clustering technique or a segmen-
tation technique (Niesterowicz and Stepinski, 2013).
As the aim of regionalization is to aggregate all lo-
cal landscapes into a much smaller number of spatially
contiguous regions – grouping landscapes having sim-
ilar patterns – the output is tantamount to a physio-
graphic map. In future work auto-mapping of Poland
(or other regions) using an unsupervised approach will
be performed and the results wiil be compared to those
obtained using other auto-mapping techniques (Ham-
mond, 1954; Iwahashi and Pike, 2007; Dragut and
Eisank, 2012).

Finally, it needs to be pointed out that local land-
scapes can be compared at different characteristic length
scales. In our method a single scale is used, but the
value of the scale is a free parameter that can be changed
to observe the influence of the scale on the results. In
the TerraEx-Pl application only a single scale of 15 km
is used so the computation is short enough to give a real
time answer to a query.

Acknowledgments. This work was supported in part
by the National Science Foundation under Grant BCS-
1147702, the Polish National Science Centre under
grant DEC-2012/07/B/ST6/01206, and by the Univer-
sity of Cincinnati Space Exploration Institute.

References

Allen, T. R., Walsh, S. J., 1996. Spatial and compositional pattern of
alpine treeline, Glacier National Park, Montana. Photogrammetric
Engineering & Remote Sensing 62(11), 1261–1268.

Barnsley, M. J., Barr, S. L., 1996. Inferring urban land use from satel-
lite sensor images using kernel-based spatial reclassification. Pho-
togrammetric Engineering and Remote Sensing 62(8), 949–958.

Bue, B. D., Stepinski, T., 2006. Automated classification of landforms
on Mars. Computers and Geoscience 32, 604–614.

Cain, D. H., Riitters, K., Orvis, K., 1997. A multi-scale analysis of
landscape statistics. Landscape Ecology 12, 199212.

Cha, S., 2007. Comprehensive survey on distance/similarity mea-
sures between probability density functions. International Journal
of Mathematical Models and Methods in Applied Sciences 1(4),
300–307.

Daly, C., Halbleib, M., Smith, J. I., P.Gibson, V., Doggett, M. K.,
Taylor, G. H., Curtis, J., Pasteris, P. P., 2008. Physiographically
sensitive mapping of climatological temperature and precipitation
across the conterminous United States. International Journal of Cli-
matology, 28, 28, 2031–2064.

Datta, R., Joshi, D., Li, J., Wang, J. Z., 2008. Image Retrieval: Ideas,
influences, and trends of the new age. ACM Computing Surveys
40, 1–60.

Dikau, R., Brabb, E., Mark, R., 1995. Morphometric landform anal-
ysis of New Mexico. Zeitschrift für Geomorphologie Supplement
101, 109–126.

Dikau, R., Brabb, E. E., Mark, R. M., 1991. Landform classification
of New Mexico by computer. Tech. rep., US Department of the
Interior, US Geological Survey.

Dragut, L., Eisank, C., 2012. Automated object-based classification
of topography from SRTM data. Geomorphology 141-142, 21–23.

Duda, R. O., Hart, P. E., Stork, D. G., 2001. Unsupervised Learning
and Clustering. In: Pattern classification (2nd edition). New York,
NY: Wiley, p. 571.

Dylik, J., 1952. The concept of the periglacial cycle in middle poland.
Bull. Soc. Sci. Letters 3, 5–29.

Dylik, J., 1956. Coup d’oeil sur la Pologne periglaciare. Biuletyn
Peryglacjalny 4, 195–238.

Evans, I., 1972. General geomorphometry, derivatives of altitude, and
descriptive statistics. In: Chorley, R. J. (Ed.), Spatial analysis in
geomorphology. Methuen, pp. 17–90.

Fearer, T. M., Norman, G. W., Pack, J. C., Bittner, S., Healy, W. M.,
2008. Influence of physiographic and climatic factors on spatial
patterns of acorn production in Maryland and Virginia, USA. Jour-
nal of Biogeography 35, 2012–2025.

Gallant, A. L., Brown, D. D., Hoffer, R. M., 2005. Automated map-
ping of Hammond’s landforms. IEEE Geoscience and Remote
Sensing Letters 2, 384–288.

Galon, R., 1972. Geomorfologia Polski: Niż Polski. Vol. 2.
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