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1. Introduction 

There is a keen interest in development of automated methods of knowledge discovery from large 
geospatial raster datasets. A geospatial raster is large either because it has an extensive geographical 
coverage or because it has a very fine resolution. Standard GIS methods of analysis are ill-suited for 
such datasets as they operate either at the level of individual raster cell or at the level of multi-cell 
“object” (Blaschke, 2010). Such approaches will provide little insight in application to large (say, 
having 109 cells) raster. This is because the size of the cell and the data spatial extent differ by too 
many orders of magnitude. To interpret and analyze giga-cell rasters we propose an addition to the 
present GIS paradigms – a spatial analysis of local patterns. A local pattern (a “scene”) is a mosaic of 
raster cell values. Importance of spatial patterns is in their association with specific geographic 
notions. For example, in a land cover dataset, a specific pattern of land cover categories can be 
recognized as a “downtown area.” At smaller scale, an analyst could be interested in an actual 
configuration and composition of land cover categories constituting downtown, but at the large scale 
it’s sufficient and indeed necessary to interpret this location by a single label. Traditionally, pattern 
analysis has been a domain of computer vision  (Datta et al., 2008), whereas spatial analysis has been 
a domain of GIS. We have integrated the two domains by developing a methodology that enables GIS 
processing of local patterns.   
 

2. Pattern-based GIS analysis of rasters 

2.1 Defining scenes 

Scenes are extracted from a raster in three different manners (see Fig.1B). (a) From neighbourhoods 
around a given set of points. (b) From a set of irregular segments. (c) As a regular grid-of-scenes. A 
grid-of-scenes covers the extent of original raster but has a much larger cell size. Grid-of-scenes 
stores pattern information extracted from square scenes centered on its cells; scenes overlap if they are 
larger than grid-of-scenes cells. A scene is represented by a pattern signature which encapsulates its 
character. Signatures are stored in the grid-of-scenes. We use histograms of pattern features as 
signatures. Pattern features are pieces of information about a pattern; only categorical features can be 
histogramed so numerical features must be categorized before they can be used. No single set of 
features describes well all possible patterns. GeoPAT – the software implementation of our 
methodology – implements several different methods of feature extractions. 

2.2 Comparing scenes 
In order to conduct operations on scenes we define a “distance” between the two scenes to be a 
distance between histograms of their features. There is no a single, universally accepted measure of 
distance between two histograms. Moreover, distance function needs to be matched with features 
selected for scene signature. In GeoPAT we have implemented several distance functions that match 
well with types of features we use.  For example, to quantify patterns of land cover we use two 
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features (land cover category and categorized size of clump to which a given cell belongs (Jasiewicz
and Stepinski, 2013a) and we measure distance between histograms using Jensen-Shannon divergence 
(Lin, 1991). To quantify topographic patterns we use co-occurrence features (Haralick et al., 1973) 
and the Wave Hedges distance. 

2.3 GIS processing of patterns 

GIS tasks are performed on the grid-of-scenes with a scene signature serving as a new type of cell 
attribute and a query-by-pattern-similarity (QBPS) based on histogram distance replacing the SQL. 
Specifically, we have implemented four GIS tasks for spatial analysis of scenes (see Fig.1C). (a) 
Clustering of scene collection (for example, into landscape types or physiographic types). (b) Search 
of dataset for scenes similar to a given sample pattern with results visualized in terms of similarity 
map that reveals a geospatial context of the sample pattern. (c) Comparison between two co-registered 
grids-of-scenes which is equivalent to a standard GIS overlay function and can be used for assessing 
change in local patterns. (d) Segmentation of grid-of-scenes into sub-regions of uniform patterns. This 
task performs regionalization of a raster with respect to patterns of original variable. For example, if 
applied to a land cover dataset it will map its constituent landscape types, and, when applied to a 
topographic data, it will map its physiographic regions. 
  

3. Application to topographic dataset of Poland  
To demonstrate our methodology we have performed all four tasks described in section 2.2 using a 
30m/cell DEM (21,696 × 24,692 cells) covering the territory of Poland. First, the DEM was 
categorized into 10 landform elements using the geomorphons method (Jasiewicz and Stepinski, 
2013b).  The landform elements map is shown in the center of Fig.2. We constructed a grid-of-cells 
with the resolution of 1.5 km (50 times larger than a resolution of the DEM) and extracted 
(overlapping) scenes having size of 15×15 km each. We used co-occurrence features to construct 
histograms and the Wave Hedges function to measure distances between histograms. Panel A shows 
schematically the results of the clustering task. A collection of scenes is clustered using hierarchical 
clustering method (shown here graphically in a form of a “heat map”). In this example the collection 
splits into three clusters interpreted as mountains, hills, and lowlands, respectively. Panel B shows the 
working of the search task. Three queries are shown each resulting in a creation of similarity map 
visualizing spatial extent of terrain similar to the corresponding query. Panel C shows a comparison 
between two rasters. In this case both rasters are categorizations of the original DEM but using 
different parameters, the result is a map showing regions where change in categorization parameters  

Figure 1: Application of pattern-based analysis to 30m/cell DEM covering the entire extent of the 
country of Poland.  
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results in significantly different interpretations of landscapes. Panel D shows results of the 
segmentation task. The territory of Poland is divided into irregular segments so that topographic 
pattern (landscape) in each segment is uniform. Classification of those segments yields a 
physiographic map of Poland (see Jasiewicz et al., 2014 for details). Such map could be thought of as 
the result of unsupervised machine learning. Alternatively, by selecting samples of major 
physiographic regions in Poland and running search task, a supervised learning-based physiographic 
map of Poland can be created as well. 

3. Conclusions 

We presented a methodology for knowledge extraction from giga-cell raster datasets. The 
methodology is based on spatial processing of local patterns formed by an original dataset variable. 
Computer visions concepts of pattern representation and similarity are used to extend several GIS 
tasks to work with grids of patterns. All steps necessary to apply our methodology in practice are 
contained in the toolbox GeoPAT which is freely available for download from http://sil.uc.edu/gitlist . 
This toolbox is a collection of newly written GRASS GIS modules. Integration with GRASS assures 
that very large datasets can be processed with ease and makes possible creation of scripts for 
computational pipelines that use other GRASS, as well as R modules. Such integration make complex 
tasks, such as, for example, supervised or unsupervised delineation of physiographic regions over 
large extents, relatively fast and easy.   In addition to land cover and topography, our method can be 
applied to multiple other domains including crops, soils, climate, phenology, as well as socio-

Figure 2: Application of pattern-based analysis to 30m/cell DEM covering the entire extent of the 
country of Poland.  
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economic data. It can also be applied to very large, high resolution images where multiple instance 
learning approach (Vatsavai, 2013) is currently used for the segmentation task. 
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