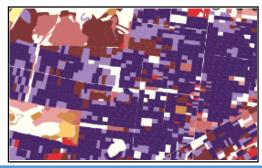
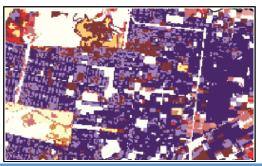

High Resolution, Multi-Year Compatible Dasymetric Models of US Population

Dasymetric modeling implementation in R

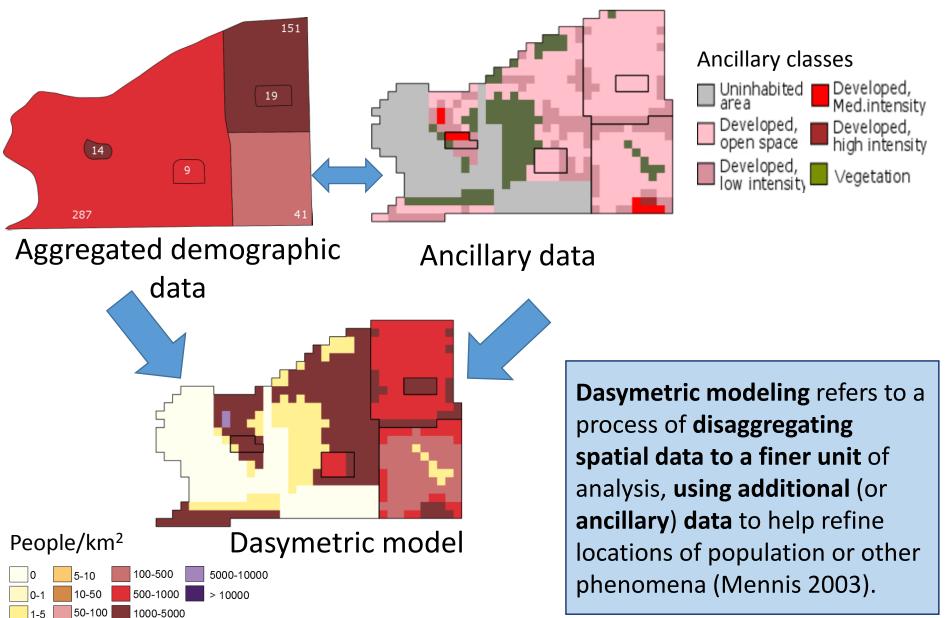



Anna Dmowska^{1,2} (<u>dmowska@amu.edu.pl</u>) Tomasz Stepinski¹ (<u>stepintz@ucmail.uc.edu</u>) Paweł Netzel¹ (<u>netzelpl@ucmail.uc.edu</u>)

¹ Space Informatics Lab, University of Cincinnati, US
² Adam Mickiewicz University, Poznan, Poland

GIScience 2016, 27.09.2016-30.09.2016, Montreal, Canada

Demographic data



ELEMENT	DATA AGGREGATED TO UNITS	GRIDDED DATA
Availability	Available in different level of aggregation for each decenial Census for the entire U.S.	 Prepared primarily on a local scale Not available as multi-year compatible datasets
GIS format	<pre>vector (shapefile) + attribute table; difficult to work with large shapefile files</pre>	raster; easy to work with large raster files
Spatial resolution	dependent on the choice of Census units and spatially varying; low in rural areas	high and spatially constant; defined by the size of the cell
Uniformity	mapped population distributed uniformly within each Census unit	mapped population density changes continuously from cell to cell
Temporal change	the extents of Census units change with time , which makes difficult year-to-year comparison	grid enables direct cell-to-cell temporal comparison

There is a need to develop hi-res multi-year compatible population datasets, which can be used to perform analysis for large areas.

Dasymetric modeling

What makes it difficult to perform dasymetric modeling for large areas?

- Size of dataset
 - Size of input data: 11 milions of aggregated units (U.S. Census 2010)
 - Size of output data: 8 bilions of cells (30x30m grid)
- The limited availability of high resolution ancillary data for large areas
 - Ancillary data must be available for the entire area in uniform fashion and quality
 - Ancillary data must be **comparable between years**
- The need to develop an **efficient**, **fully automated algorithm** to work with large datasets, which will allow to perform calculations within a reasonable time

Our project

The goal of this project is to provide an **open and convenient access** to high resolution, **multi-year compatible** population data.

Developing software to perfom dasymetric modeling for large datasets

Preparing hi-res, multi-year compatible population g**rids**: Spatial resolution: 30 m, Time: 1990, 2000, 2010

Developing **GeoWeb application** to provide **open access** to population grids

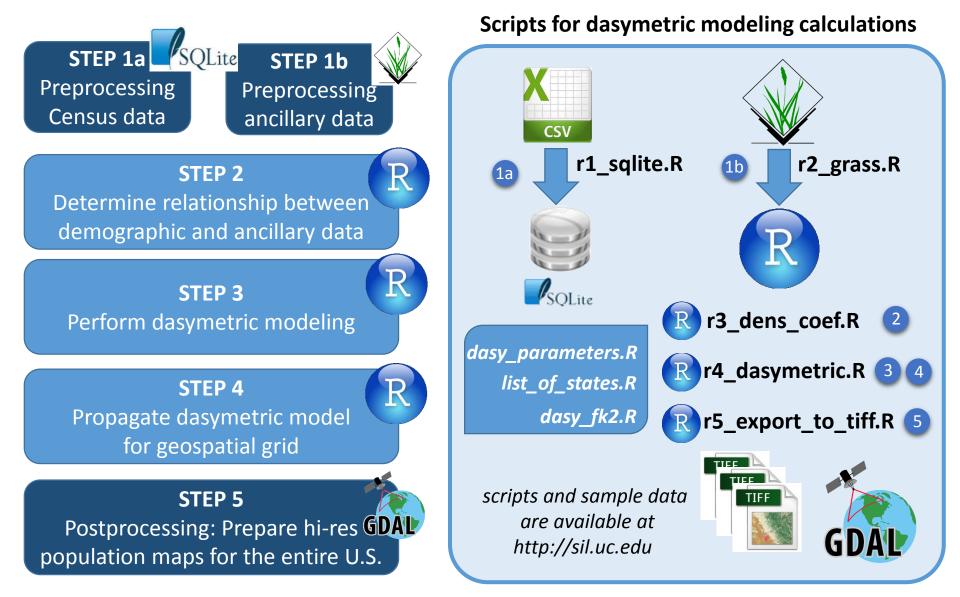
Developing software – dealing with large datasets

GIS SOFTWARE

- + contains a lot of "ready to use" tools designed to solve a specific task
- it is **difficult to extend** if the problem goes beyond its built-in capabilities
- computationally inefficient for large datasets

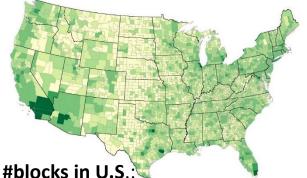
SOFTWARE BUILT FROM SCRATCH

- + computationally **efficient** for large datasets
- + we decide about its functionality and flexibility
- requires advanced programming skills (i.e C, C++)


WORKING IN R ENVIRONMENT

+ Allow to build efficient, flexible and fully automated computational environment to work with large dataset without advanced programming skills.

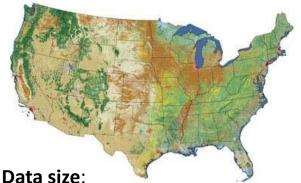
+ R is a comprehensive computational environment that includes **libraries to work with different types of data**: *geospatial data* (sp, rgrass7, raster, rgdal), *standard relational databases* (DBI, RSQLite).


+ Main advantages of using R over GIS software are: less processing steps are required, no intermediate layers, increased flexibility and automation.

How our algorithm works?

Applying dasymetric modeling to U.S.-wide data

DEMOGRAPHIC DATA


~7,15 milions (1990), ~8,2 milions (2000), ~11,15 milions (2010)

The **1990, 2000, and 2010 decennial Censuses** data aggregated to **block level**.

This data consist of two components:

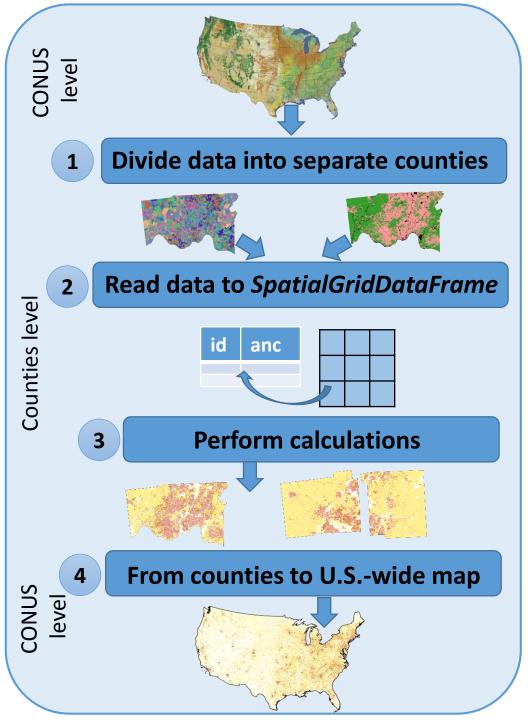
- <u>shapefiles</u> (TIGER/Line Files) indicating **blocks' geographical boundaries** available for **each state** separately
- <u>summary text files</u> which list **population** data **for each block** available **for the entire U.S**. as one tabular file

ANCILLARY DATA

 $104424 \times 161190 = 16832104560$ cells (no-null cells: 8651173750) Land cover data - the only high resolution ancillary data available for the entire U.S. in uniform fashion and quality.

NLCD products:

- NLCD 2001
- NLCD 2011
- NLCD 1992/2001 Retrofit Land Cover Change Product

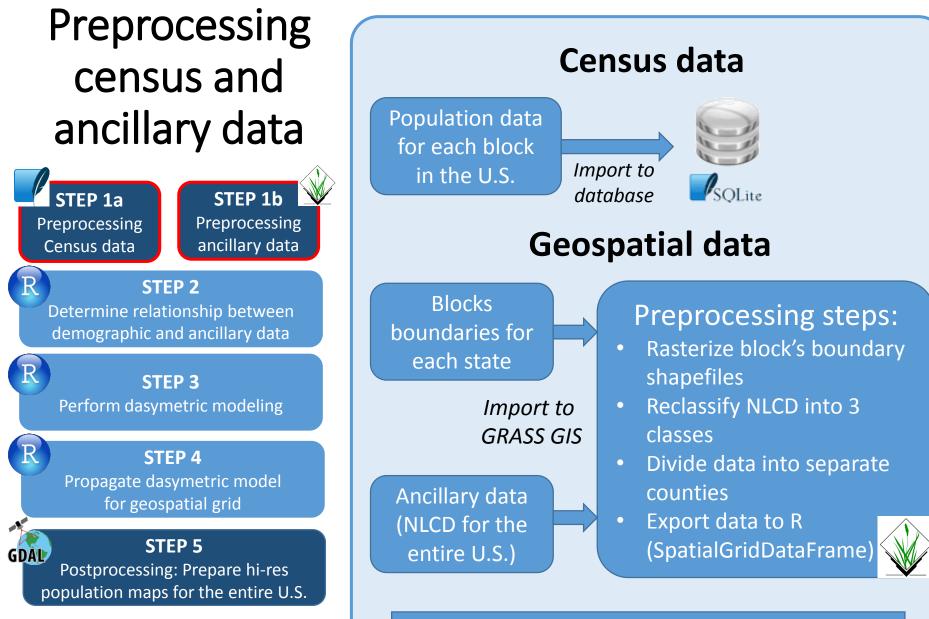

NLCDs are **reclassified to 3 classes** (uninhabited, urban, vegetation) to preserve comparability between years.

NLCD1992 has incompatible legend with next editions and can't be used for change analysis. Instead NLCD 1992/2001 Retrofit Land Cover Change Product was developed.

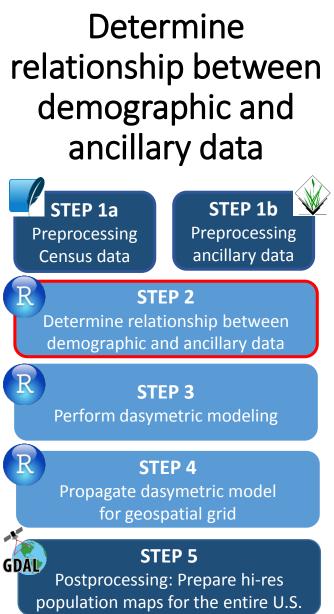
Handling large dataset in R

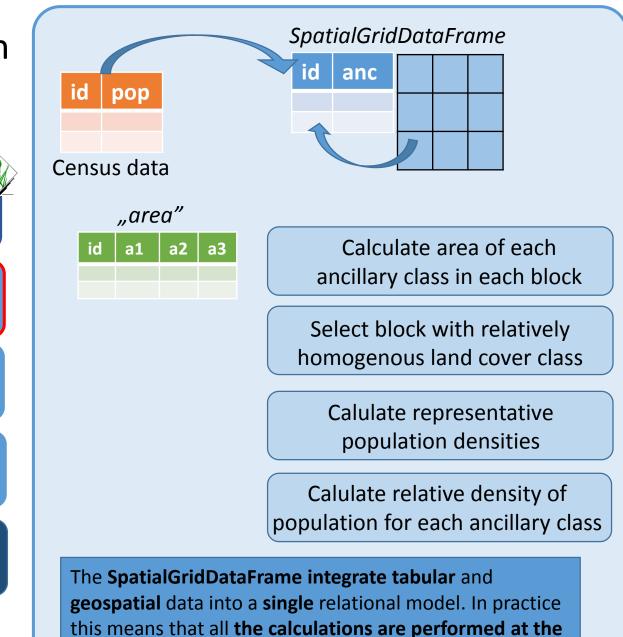
- 1 To manage data storage requirements and to better control the time of computation we **divide U.S. into separate counties**.
 - We used region concept in GRASS GIS for computationally efficient division of U.S. into separate counties.
- 2 Raster data for each county is read into SpatialGridDataFrame object in
 - R
 - This structure allow to integrate information about its spatial content with Census data into a single relational model.
 - We process each county separately.

In the last step maps for individual counties are joined into U.S.-wide map

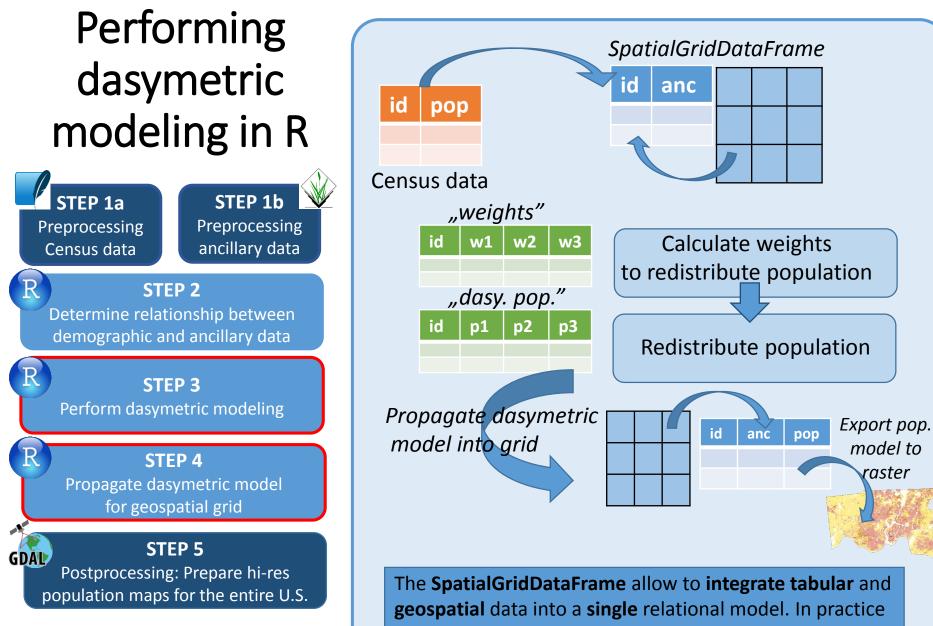


Our methodology

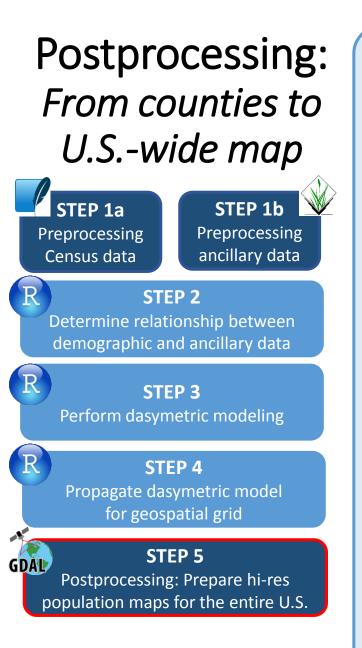

STFP 1b STFP 1a Preprocessing Preprocessing ancillary data Census data **STEP 2** Determine relationship between demographic and ancillary data **STEP 3** Perform dasymetric modeling **STEP 4** Propagate dasymetric model for geospatial grid **STEP 5** GDAL Postprocessing: Prepare hi-res

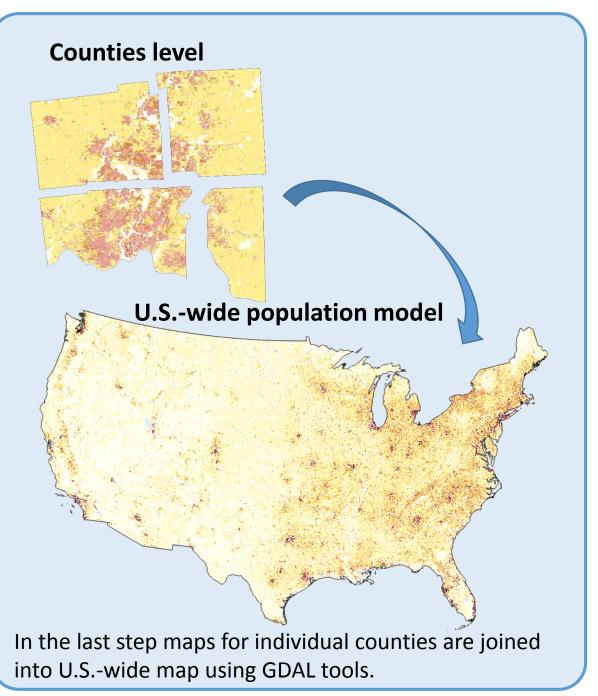

population maps for the entire U.S.

- The population in each block is redistributed to its cells using block-specific weights assigned to the cells having different ancillary classes.
- The weights are assigned based on two factors:
 - **relative density** of population for each ancillary class,
 - the area of each block occupied by each class (Mennis 2003).
- **Relative densities** are the representative densities normalized by the sum of representative densities for each class.
- Representative population density for each class is established using a set of blocks (selected from the entire U.S.) having relatively homogenous land cover (90% for developed classes and 95% for vegetation classes).
- Population in each block's cell = number of people in the block multiply by a weight assigned to the cell based on its ancillary class.



Performed dasymetric modeling in raster data = significant gain in computational performance

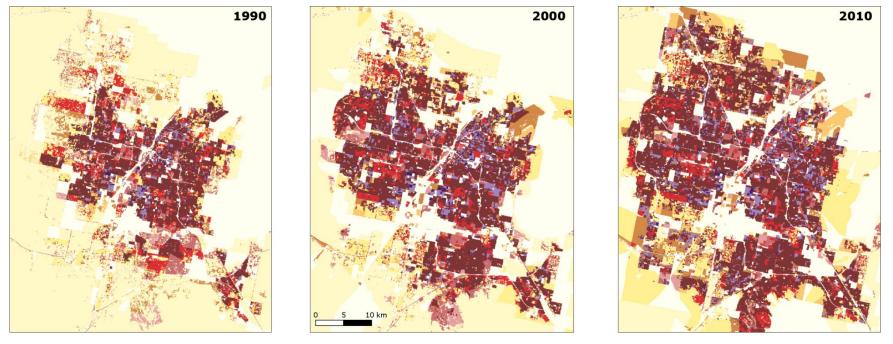




data frame (tabular) level.

geospatial data into a **single** relational model. In practice this means that all **the calculations are performed at the data frame** (tabular) level and next **propagate into a grid**.

Performance


GIS SOFTWARE VS R

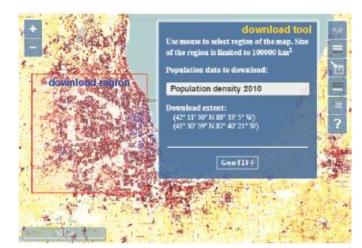
GIS SOFTWARE (USGS ArcGIS toolbox)	R SCRIPTS		
Hamilton County = 10808 Census blocks			
600 seconds (10 min.)	14 seconds		
U.S. CALCULATION			
DATA	SIZE OF FILES		
Nb. of blocks in U.S.	~7,15 milions (1990), ~8,2 milions (2000), ~11,15 milions (2010)		
Size of output map in cells	16 832 104 560 (no-null: 8 651 173 750)		
Processing steps	Calculation time		
Preprocessing data	37 h		
Determine relation between population and ancillary data, Perform dasymetric model	6 h		
Create one map from counties	12 h		
Overall time	55 h		

All calculation was done using a PC computer with Intel 3.4GHz, 4-cores processor and 16 GB of memory running the Linux system.

High resolution multi-year compatible U.S. population model

Population dynamics change for Las Vegas, NV based on hi-res grids for 1990, 2000 and 2010.

People/km²


Providing open access to hi-res grids for the entire U.S. SocScape – GeoWeb application http://sil.uc.edu/webapps/socscape_usa/

Avalailable data: Population distribution, racial diversity Time: 1990/2000/2010

SocScape can be useful for:

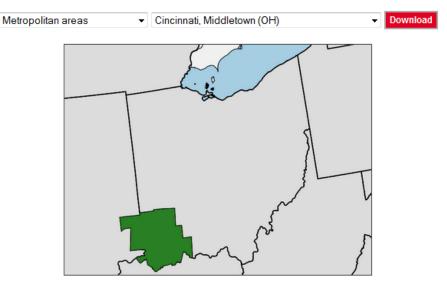
- Fast and intuitive exploration of population density and racial diversity in different scales (from the entire U.S. down to the street level)
- **Detecting spatial dynamics** of population density and racial diversity.
- Downloading data in Geotiff format for selected area (up to 100 000 km²)

Providing open access to hi-res grids for counties and metropolitan areas.

http://sil.uc.edu/cms/index.php?id=socscape-data

Select the state name and next county name from the dropdown menus below and click "Downolad"

Spatial extent:


- 3100 counties
- 363 metropolitan areas

Maps:

- Population distribution,
- Race distribution,
- Racial diversity

Time: 1990/2000/2010

For downoload data for metropolitan areas select metropolitan areas (the last position on the list) from the left menu and name of MSA from the right menu and **click "Downolad"**

Data for each unit (county or MSA) is organized as a zip archive containing data for 1990, 2000 and 2010. Grids are saved as GeoTiff.

Conclusion

Our project to provide **open and convenient access to hi-res multi-year grids** of US population is now **completed**.

- We developed 30 m resolution grids of the U.S. population in 1990, 2000, and 2010 using a multi-year compatible dasymetric model.
 - These grids are designed to assess population change across the conterminous U.S. at street-level spatial resolution.
- The model and its novel, **computationally efficient implementation in R** are presented.
- The **grids are available online** for interactive exploration and data download using especially developed GeoWeb application SocScape:

http://sil.uc.edu/webapps/socscape_usa/

Acknowledgments

The authors wish to thank J.Jasiewicz for helpful comments on the development of computationally efficient implementation of dasymetric modeling algorithm in R.