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ABSTRACT

Classifying the entire land surface into different climate types provides a convenient means of diagnosing
the existence of spatial relations between Earth s various physical and biological systems and the climate.
Global climate classifications are also used to visualize climate change. Clustering of climate datasets seems
like a natural approach to climate classification but instead it is the Koppen-Geiger classification (KGC) that
is the most widely used. Here, we present a comprehensive approach to the clustering-based classification
of climates. Going beyond previous research, we define local climate as a multivariate time series of mean-
monthly climatic variables and propose to use Dynamic Time Warping (DTW) as a measure of dissimilarity
between local climates. We also discuss the choice of climatic variables, the importance of their proper
normalization, and point out the advantage of using distance-based clustering algorithms. Using the World-
Clim global climate dataset and different combinations of clustering parameters we calculate 32 different
clustering-based classifications. These classifications are compared between themselves and to the KGC us-
ing the information-theoretic V-measure. We find that the best classifications are obtained using three climate
variables (temperature, precipitation, and temperature range), a data normalization that takes into account the
skewed distribution of precipitation values, and the Partitioning Around Medoids clustering algorithm. We
compare in detail two such classifications both to each other and to the KGC. About half the climate types
found by clustering can be matched to the familiar KGC classes but the rest differ in their climatic character
and spatial distribution. Finally, we demonstrate that clustering-based classification results in climate types

that are internally more homogeneous and externally more distinct than climate types in the KGC.

1. Introduction

Global climate classification schemes aim to identify
distinct climate types and map their geographical extents.
By discretizing a multitude of local climates (LCs) into
a manageable number of climate types (CTs, list of all
acronyms is given in Table 1.) classification simplifies
the spatial variability of climates into a form that is more
meaningful and easier to analyze. Thus, climate classifi-
cation provides intuitive and valuable insight into the re-
lationships between climate and Earth s physical and bi-
ological systems, such as erosion (Peel et al. 2001), soils
(Rohli et al. 2015), the biota (Baker et al. 2010; Garcia
et al. 2014), as well as distributions of invasive species
(Werier and Naczi 2014) and virus vectors (Brugger and
Rubel 2013). Climate classification is also used to provide
visualization of global climate datasets (Fraedrich et al.
2001; Diaz and Eischeid 2007; Zhang and Yan 2014; Chen
and Chen 2013; Spinoni et al. 2015) in order to illustrate
climate change in terms of shifting geographical bound-
aries of major climate types. Similarly, it is used to visual-
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ize future spatial distributions of climate types (Beck et al.
2005; Gallardo et al. 2013; Hanf et al. 2012; Mahlstein
et al. 2013) as predicted by climate models. Some studies
(Rubel and Kottek 2010; Feng et al. 2014) applied climate
classification to a combination of historical data and model
predictions to illustrate climate shifts over the longer time
periods. Finally, climate classification was used to inter-
pret the results of models designed to simulate paleocli-
mates (Guetter and Kutzbach 1990).

From a methodological point of view, widely used
global climate classifications (Koppen 1936; Thornth-
waite 1948; Trewartha and Horn 1980) are heuris-
tic schemes re ecting environmental and geographical
knowledge accumulated over decades of research. In par-
ticular, the Koppen-Geiger classification (KGC) scheme
(Koppen 1936) has become a de facto standard for global
climate classification especially as its modern implemen-
tations (Kottek et al. 2006; Peel et al. 2007; Spinoni et al.
2015) allow for convenient mapping of CTs from climatic
data collected from an extensive, world-wide network of
weather stations.

Despite its popularity the KGC has a number of short-
comings, the chief among them being the core method-
ology itself. The KGC is based on the assumption that
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TABLE 1. List of acronyms used in the paper

LC local climate
CT climate type
KGC Koppen-Geiger classification

LTMM long-term monthly-means

PCA principal components analysis

DTW dynamic time warping dissimilarity function
EUC Euclidean dissimilarity function

HC hierarchical clustering

PAM partitioning around medoids

delineation of CTs can be guided by the extents of dif-
ferent plant regions (Thornthwaite 1943) by expressing
their boundaries in terms of temperature and precipitation.
It is classification by a hierarchy of predicate statements
(Spinoni et al. 2015) that assigns a class to an LC on the
basis of the values of long-term monthly-means (LTMM)
of temperature and precipitation. This system lacks the
notion of similarity between LCs (see section 3¢ for elab-
oration) making it impossible to assess natively the unifor-
mity of climates within a given CT. Similarly, it lacks the
notion of similarity between CTs beyond organizing them
into a hierarchy. In addition, the CTs are permanently set
by the KGC. This is a potential issue when using climate
classification to visualize global climate change. Apply-
ing the KGC to the results of climate models to map fu-
ture climatic zones does not account for the possibility of
an emergence of new CTs.

In this paper we investigate a clustering approach to the
problem of global classification of climates. A cluster-
ing process groups LCs into clusters based on their mutual
similarities using an automatic (unsupervised) algorithm.
We associate these clusters with CTs. CTs are “discov-
ered” by an algorithm on the basis of what s in the data
without any prior assumptions about their expected char-
acter and/or location. A clustering approach is feasible
due to the availability of extensive, global LTMM climatic
datasets (Hijmans et al. 2005; Harris et al. 2014). Each
dataset record is used to describe an LC at the location of
a station, or at a grid cell if the data is gridded. The degree
of dislikeness between a given pair of LCs is measured
by a dissimilarity function. LC representation and the dis-
similarity function are also used to assess the climatic uni-
formity of any CTs regardless of whether they originated
from clustering or were delineated by the KGC.

Using clustering to delineate climatic zones has been
proposed previously, albeit mostly in a regional rather
than global context (Stooksbury and Michaels (1991); De-
Gaetano (1996); Bunkers et al. (1996); Fovell and Fovell
(1993); Unal et al. (2003). All these early studies used
very similar techniques — representing LC as a vector of
LTMM of climatic variables, using the Euclidean distance
as the dissimilarity function between LCs, and applying
the hierarchical clustering algorithm to obtain the set of

CTs. Most studies also used the Principal Component
Analysis (PCA) to reduce the dimensionality of vectors
representing LCs.

More recently, with the increased availability of climate
data from world-wide networks of stations, a clustering
methodology has been applied to global classification of
climates (Zscheischler et al. 2012; Zhang and Yan 2014,
Metzger et al. 2012). The clustering techniques used in
these studies follow the methods applied to regional clas-
sifications. LCs are represented by vectors, with Zhang
and Yan (2014) using LTMM for temperature and precip-
itation, Zscheischler et al. (2012) using LTMM of three
remotely sensed indices including two vegetation indices
in addition to LTMM for temperature and precipitation,
and Metzger et al. (2012) using a vector of 42 bioclimatic
variables. All three studies use the Euclidean distance and
various versions of K-means clustering to obtain CTs.

All previous clustering-based classifications of climates
studies used generic, off-the-shelf techniques without tak-
ing into account the specificity of climate data. In this
paper we revisit this problem by introducing climate-data-
specific modifications to the clustering procedure. Be-
cause LC is an intra-annual pattern of weather conditions
at a given location we propose to represent it as a cyclic
time series of local climatic variables rather than as a fea-
ture vector of these variables. A time series representa-
tion takes into consideration month-to-month sequencing
information which the vector representation lacks; it cor-
responds more closely to the human perception of climate.
To take advantage of sequencing information we also pro-
pose to use the Dynamic Time Warping (DTW) distance
(Berndt and Clifford 1994) rather than the Euclidean dis-
tance as a dissimilarity function. To account for the cyclic
nature of climate we use a version of DTW designed for
cycling time series. We submit that LCs, as represented
by time series, should not be averaged because the mean
may not re ect correctly properties of the set of LCs from
which it was derived. Consequently, our analysis is per-
formed in a distance space (Ganti et al. 1999) rather than
in a more common feature space; the only allowable oper-
ation on a pair of LCs is the calculation of their dissimi-
larity value.

Using our enhancements to the clustering method we
calculate and compare 32 different climate classifications
obtained using different clustering protocols. The goal is
to determine which elements of the clustering process (the
choice of variables, the choice of normalization procedure,
the choice of dissimilarity function, and the choice of clus-
tering algorithm) have the greatest in uence on the result
and to select the preferred classifications. Then, the two
preferred classifications (one using the DTW and another
using the Euclidean distance as the dissimilarity function)
are compared to each other and to the KGC from the per-
spective of how they partition the land surface and the
character of their CTs. Finally, the DTW-based and KG
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classifications are examined for spatial and climatic inho-
mogeneities of their CTs.

2. Data and Methods
a. Data, variables, and normalization

We use the WorldClim global climate dataset (Hijmans
et al. 2005). WorldClim data is given on a 30 arc. sec. grid
and has the spatial extent of (180W, 180E) - (90N, 60S).
The grid cells contain mean-monthly climatic variables
interpolated from a meteorological time series measured
from a world-wide network of meteorological stations be-
tween 1950 and 2000. We use mean-monthly values of the
following variables: temperature, denoted by 7', which is a
measure of average thermal conditions; precipitation, de-
noted by R, which is a measure of climate humidity; and
temperature range, D = T,qx — Tnin, Which is a measure
of thermal condition variability. 7;,;; and 7, are mean-
monthly values of minimum and maximum temperature,
respectively.

We reprojected the WorldClim grid to the Mollweide
projection which is a near-equal area global projection
(Usery and Seong 2001). We require an equal area pro-
jection for evaluating similarity between different classifi-
cations (Cannon 2012). We then resampled the Mollweide
grid to the resolution of 75 km x 75 km per cell resulting
in a 213 x 482 grid of which 23,979 cells represent land
surface and the rest represent water. We use such a rel-
atively coarse grid due to computational considerations.
Because we work in the distance space we need to gen-
erate and work with dissimilarity matrices having a size
equal to the square of the number of cells. However, as
our goal in this paper is to compare different clustering-
based classifications rather than to produce the most accu-
rate map of climate types, this resolution is sufficient.

Climatic variables have different meanings and differ-
ent ranges of values. In order to contribute equally to the
value of dissimilarity between two LCs they need to be
scaled to have identical ranges (using normalization, as
performed by Zhang and Yan (2014)) or, at least, sim-
ilar ranges (using z-score standardization, as performed
by Zscheischler et al. (2012)), otherwise the value of dis-
similarity would be over-in uenced by the variable with
the largest range. We use two different normalization
transformations. The first is the standard normalization
X; < (X; —Min X;)/(Max X; — Min X;) where X; are cli-
matic variables. We refer to this type of normalization as
“global” or (g). However, we note that precipitation vari-
able, with a range of Omm to 1550mm, has a distribution
which is highly skewed toward large values. This means
that an overwhelming number of normalized values for
precipitation will be very small. As a result the in uence
of precipitation on the overall dissimilarity between LCs
would be artificially diminished. Thus, we introduced a
second normalization procedure referred to as “modified”

or (I). This procedure transforms variables T and D ac-
cording to the normalization formula as given above, but
the variable R is transformed as follows:

R<—{3I§0 if R < 350 o

1 if R > 350

Thus, the top 1% of precipitation values, those in a range
of 350mm to 1550mm, are all transformed to the value of
1 while the 99% of precipitation values, those in a range
between Omm and 350mm, are transformed to values be-
tween 0 and 1. This has the effect of restoring the in uence
of precipitation on the overall dissimilarity between LCs
while preserving 99% of precipitation data unmodified.

b. Climate representation, dissimilarity functions, and
clustering methods

We represent local climate as a trivariate (bivariate if
only T and R are used) cyclic time series. Thus, a LC at
location i is given as LC; = {M},...,M!?}, where the time
series progresses through 12 months M; = (T;',R!,D}),
i={1,...,12}, from January to December. We use multi-
variate time series representation of an LC to account for
the interactions and comovements between the three (or
two) climate variables.

We utilize two different dissimilarity functions appro-
priate for multivariate time series; (1) time-shift invariant
versions of the Dynamic Time Warping dgiT W(LC,LCy)
and (2) time-shift invariant version of the Euclidean dis-
tance dZVC(LC,LC,). To calculate d2YC the standard

tsi tsi

Euclidean distance, 4/ Zlﬁl dz(M{‘,Mg), between LC; and

LC; is calculated twelve times. During this calculation the
time series representing LC; is kept unchanged whereas
the time series representing LC, undergoes a cyclic shift in
the sequence of months. The dEV€(LCy,LC,) is the mini-
mum of the twelve calculated values. This ensures that the
dissimilarity between two LCs is independent from time
shift in their seasons.

Our preferred dissimilarity function is Dynamic Time
Warping (DTW) (Berndt and Clifford 1994). DTW is
widely used for calculating dissimilarity between two time
series. The difference between DTW and Euclidean dis-
tance is that DTW allows non-linear alignments between
two time series to accommodate sequences that are sim-
ilar, but locally out of phase (Rabiner and Juand 1993;
Nafiz 2005)). Fig. 1 illustrates this difference; two lo-
cal climates (for Dallas and Los Angeles) are shown as
bivariate (7 and R) monthly series. Standard Euclidean
distance aligns the two series month-to-the-same-month
as shown by dashed lines in Fig. 1A1. This corresponds to
taking a diagonal (possibly sub-optimal) path in the matrix
of distances between two series as shown in an Fig. 1A2.
The matrix of distances consists of Euclidean distances be-
tween each possible pair of months. DTW calculates dis-
tance between two series using an optimal (resulting in the
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F1G. 1. Comparison between DTW and Euclidean distances using bivariate (T and R) time series for Los Angeles (orange) and Dallas (blue).
(A1) Dashed lines show an alignment of pairs used by Euclidean distance. (A2) A sub-optimal path through the distance matrix corresponding to
Euclidean distance. (B1) Dashed lines show an alignment of pairs used by DTW. (B2) An optimal path through the distance matrix corresponding

to DTW.

minimum value of the overall distance) path through the
matrix of distances (Fig. 1B2). Dashed lines in Fig. 1B1
shows the alignment between the two time series result-
ing from the optimal path. In our calculations we use a
cyclic version of DTW, similar to the one described in
Nafiz (2005), which in addition to non-linear alignment
also uses the same minimization over the cyclic shifts of
months as described above for the dtk;,U ¢

As we work in the distance space the first step for any
clustering-based classification is the calculation of dissim-
ilarity between all pairs of LCs resulting in a 23,979 X
23,979 dissimilarity matrix. A separate dissimilarity ma-
trix needs to be calculated for all combinations of the
choice of normalization, number of variables, and the
choice of dissimilarity measure. To obtain a classifica-
tion we use two popular clustering algorithms that take a
dissimilarity matrix as their only input. The first is a hier-
archical clustering (HC) with Ward linkage (Ward 1963)
and the second is the Partitioning Around Medoids (PAM)
algorithm (Kaufman and Rousseeuw 1987). We use im-
plementations of these algorithms in the R software envi-
ronment.

c. Classification evaluation methods

We use two different evaluations of climate classifica-
tions, one involves evaluating the degree to which two
classifications result in similar spatial partitioning, and the
other evaluates the clustering quality of a single classifica-
tion.

First, we want to quantify the degree to which two
different classifications partition the world into similar
climatic zones. For this purpose we use an informa-
tion theoretic index called the V-measure (Rosenberg and
Hirschberg 2007). Fig. 2A illustrates the principle of V-
measure using the specific example of KG5 and TRDI

DTW PAMS5 classifications (see the next section for ex-
planation of classifications naming convention). The
KGS5 (KG for short) partitions the world into five climate
classes; spatial extents of these classes are shown by non-
gray areas in the left column of Fig. 2A. The TRDI DTW
PAMS5 (DTW for short) partitions the world into five cli-
mate types; spatial extents of these types are shown by
non-gray areas in the right column of Fig. 2A. We observe
that an area of each class intersects multiple types as in-
dicated by type-specific colors. For each class the entropy
of a histogram of it constituent types measures a level of
class homogeneity with respect to types. Homogeneous
classes (like A) have small values of entropy and inhomo-
geneous classes (like D) have large values of entropy. The
ratio of class entropy to the entropy of the entire DTW par-
tition of the world indicates how much more uniform the
distribution of types in a given class is with respect to the
entire world. The area-weighted average of such ratios is
a measure (the smaller the better) of homogeneity of KG
classes with respect to DTW types. Reversing the roles of
classes and types (right column in Fig. 2A) we calculate
a completeness of KG classes with respect to DTW types.
The V-measure is the harmonic mean of homogeneity and
completeness. Note that V-measure is symmetric with re-
spect to the partitions.

Second, we want to evaluate the quality of a single clas-
sification. Here, we assume that a classification is of good
quality if LCs within each CT are all highly similar and
CTs are highly dissimilar from each other. Thus, we need
to treat all classifications as clusterings (even the KGC)
and perform an internal evaluation of these clusterings us-
ing the Davies—Bouldin index DB (Davies and Bouldin
1979). The smaller the value of DB the better the quality of
the classification. Note that clustering quality is only one
of many criteria we use to evaluate classifications, how-
ever it is the only one which is quantitative. As the value



JOURNAL OF CLIMATE 5

123 456 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 B
T T T T T T T

‘, 1 iy, ‘ "‘ e,
A g P f =t
KG A 0.14 " ptw4 113

-

—

+ KGB 1.1 DTWS5 048

- o (', .

¥
DTW2 155

ey,

o

lowest =0

o

dissimilarity

DTW3 1.46

KGD 16
e P oimee

highest=0.63

T T T T T T T T T T T T T T T T T T T
1 KG13  3.42

2 KG5 3.06

3 TRIEUCHC5 1.92

4 TRIEUCHC13 211

5 TRDI DTW PAM13  1.92
6 TRDIEUC PAM13  2.08
7 TRIEUC PAM13 191

8 TRIDTW PAM13 2.

9 TRIDTW HC13 2.16

10 TRIDTW HC5 1.8

11 TRDIDTW PAM5  1.85
12 TRDIEUC PAMS  1.92
13 TRIEUC PAM5 1.71
14 TRIDTW PAM5  1.81
15 TRDIEUC HC13  2.32
16 TRDIEUC HC5 1.92
17 TRDIDTW HC13 248
18 TRDIDTW HC5 2.28
19 TRg EUC PAM13 2,04
20 TRg DTW PAM13  2.07
21 TRgEUCHC13 2.02
22 TREUCHC5 1.4

23 TRg DTW HC13  2.13
24 TRgDTWHC5 1.5

25 TRgDTW PAM5 1.4
26 TRg EUC PAM5 1.44
27 TRDg DTW PAM13  2.04
28 TRDg EUC PAM13  1.89
29 TRDg DTW PAM5  1.93
30 TRDg EUC PAM5 1.98
31 TRDg DTW HC13  2.14
32 TRDg DTW HC5 1.68
33 TRDg EUC HC13 2.1
34 TRDg EUCHC5 1.92

P S S S S A S T S ST T S T S T S SR S S S T S T T ST T T

_KGE 1.29 DTW1 0.94

FIG. 2. (A) Illustrating the concept of V-measure. The right column shows spatial extents of KG5 climate classes and how they intersect TRDI
DTW PAMS climate types. The left column shows spatial extents of TRDI DTW PAMS5 climate types and how they intersect KG5 climate classes.
The value of entropy is given for each class and type. See Fig. 3 for legends linking colors to specific climatic classes and types. (B) Heat map
illustrating the V-measure-based comparison between 34 different climate classifications. The black-to-white color gradient indicates dissimilarities
between pairs of classifications from small to large. Note the significant degree of dissimilarity between the clustering-based classification and the

KGC.

of clustering quality is dependent on the definition of the
dissimilarity function, it is possible, in principle, to get a
bad classification with high clustering quality if an inap-
propriate dissimilarity function is used.

3. Results

The results are grouped into three parts: (1) comparison
of 32 different clustering-based classifications stemming
from different choices of free parameters in the cluster-
ing process, (2) detailed comparison of the two preferred
classifications between themselves and the KGC, and (3)
examination of climate inhomogeneities within CTs.

a. Comparison of clustering-based classifications

There are five different parameters in the clustering pro-
cedure.

e The number of climatic variables used to describe an
LC, either two variables (T and R) or three variables
(T, R, and D).

e The method of variable normalization, either global
(g) or modified (7).

e The choice of a dissimilarity function, either DTW or
the Euclidean distance.

e The choice of a clustering algorithm, either HC or
PAM.

e The number of climate types (clusters), either 5 or 13
to match the number of classes in the first two levels
of the KGC.

Determining the optimal number of clusters directly from
the data is possible but was not attempted because the fo-
cus was on comparison to the KGC. Altogether there are
32 combinations of these parameters resulting in 32 pos-
sible protocols for clustering procedure and leading to 32
different classifications.

Fig. 2B shows the results of the comparisons between
34 climate classifications (the KGC for 5 and 13 CTs are
also included) using the values of the V-measure as the
basis for comparison. The graph in Fig. 2B is a heat map
(Wilkinson and Friendly 2009) — a graphical representa-
tion of the V-measure-based dissimilarity matrix. Darker
colors indicate more similar classifications with black cor-
responding to a dissimilarity equal to O (identical parti-
tionings) and the lightest color corresponding to the largest
dissimilarity equal to 0.63 (between KG5 and TRDg EUC
HCS5). Notice that the largest dissimilarity is still signifi-
cantly smaller than the absolute upper limit of 1, thus all
classifications have some level of spatial correspondence
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to each other, but some more so than the others. Classi-
fications are numbered from 1 to 34, the first two being
the KGCs with 13 and 5 CTs, respectively. The remaining
classifications are labeled to indicate the choice of free pa-
rameters used, for example, TRDg DTW PAM 13 indicates
classification obtained using variables T', R, D, global nor-
malization, DTW dissimilarity function, PAM clustering
algorithm, and 13 clusters.

From examining Fig. 2B our first observation is that
none of our clustering-based classifications delineate CTs
in close spatial correspondence with the KGC. The second
observation is that for any given choice of variables, nor-
malization, and dissimilarity function, the classifications
with 5 and 13 CTs are similar if obtained using hierar-
chical clustering. This is an expected result as hierarchi-
cal clusterings (and the KGC) subdivide a more broadly-
defined CT into constituent, more narrowly-defined CTs
resulting in a high spatial correspondence between par-
titionings. The third observation is that when using the
global (g) normalization the classification depends mostly
on the number of variables, with lesser dependence on the
choice of dissimilarity function and clustering algorithm.
This is because global normalization reduces the contribu-
tion of precipitation (R) to an overall value of dissimilarity
between two LCs. Thus, a two-variable classification is
predominantly a temperature classification while a three-
variable classification delineates land surface differently
as it also depends on temperature range (D).

For classifications derived using the modified (/) nor-
malization there is no clear pattern of similarities (apart
from the coupling of corresponding classifications delin-
eated using hierarchical clustering). This indicates that
variable normalization is the most important parameter
of the clustering protocol; using improper normalization
(like the g normalization) will lead to improper classifica-
tions no matter what the other parameters are. The heat
map in Fig. 2B does not offer further insights on the rela-
tive importance of the remaining parameters. To proceed
we visually assessed the 16 classifications calculated us-
ing the / normalization procedure for their relative merits.
In our judgment the classifications using three variables
are preferred over classifications using only two variables
and those obtained using the PAM clustering algorithm
are preferred over those obtained using the HC algorithm.
Consequently we selected TRDI DTW PAM and TRDI
EUC PAM classifications for further, more detailed com-
parison.

b. Comparison between TRDI DTW PAM, TRDI EUC
PAM, and KG classifications

A more detailed comparison between the two selected
clustering-based classifications, TRDI DTW PAM (here-
after referred to as DTWS5 or DTW13 depending on the
number of CTs), TRDI EUC PAM (hereafter referred to

as EUCS5 or EUC13), and KG5/13, consists of comparing
their spatial delineations of land surface and a compari-
son of their medoids. Medoid of a CT is its constituent
LC that has the smallest average dissimilarity to all other
LCs in this CT; it corresponds to a centroid in coordinate
space. We use medoids as exemplars of CTs and compare
different CTs by comparing their medoids.

The left panels in Fig. 3 show maps of the three classifi-
cations, assuming five CTs. This number has been chosen
because there are five major types of climate in the KGC —
tropical (A), arid (B), temperate (C), continental (D), and
polar (E) — and we want to examine their relation to CTs
delineated by our algorithms. We don t assign names to
CTs obtained using clustering algorithms, we simply refer
to them as DTW5-1 to DTW5-5 and EUC5-1 to EUCS-5,
respectively. The right panels in Fig. 3 show the exem-
plars of corresponding CTs. An exemplar (or any other
LC) is visualized by a climate curve — a parametric curve
in the (T, R, D) space with time being the parameter. Only
projections of 3D climate curves onto the (7, R) plane are
shown, but the changes in the value of D are encoded by
the colors along a climate curve. Dots indicate months,
with January singled out by the larger black dot and Febru-
ary singled out by the larger gray dot. A climate s charac-
ter can be inferred from the location and the shape of the
climate curve.

The V-measure-based dissimilarity between DTW5 and
EUCS is only 0.34, but not all CTs can be matched
between the two classifications, and those that can be
matched have different spatial extents. Roughly, the
CTs in the two classifications can be matched as fol-
lows: DTW5-5—EUC5-5, DTW5-1—EUC5-1, DTW5-
4—EUC5-3 and EUC5-4, DTW5-2—EUC5-2. The CT
DTWS35-3 has no equivalent in the EUCS classification.
EUCS5 has two CTs that can be described as tropical but
doesn t have separate CTs that distinguish between conti-
nental and polar climates.

The V-measure-based dissimilarity between DTW5 and
KGS5 is 0.5, but visually they appear to match better
than DTWS5 and EUCS5. Roughly, the CTs in the two
classification can be matched as follows: DTW5-4—A,
DTW5-5—B, DTW5-2—C, DTW5-3—D, and DTW5-
1—E. However, the exemplar for DTW5-2 has a very dif-
ferent character than the exemplar for C, which displays
a tropical-like shape albeit at the lower range of tempera-
tures and with the smaller amplitude of precipitation. The
V-measure-based dissimilarity between EUCS and KG5
is 0.51, the biggest difference between them being the ex-
tents and climatic profiles of temperate CTs and the exis-
tence of two tropical CTs in the EUCS. In our opinion, the
DTWS5 offers the most reasonable division of land surface
into only five CTs.

Next, we compare these three classifications assuming
thirteen CTs — the number of CTs at the second level of the
KGC. At that level KGC CTs are: tropical rainforest Af,
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tropical monsoon (Am), tropical savanna (Aw), arid desert  continental without dry season (Df), polar tundra (ET),
(BW), arid steppe (BS), temperate dry summer (Cs), tem- and polar frost (EF). We refer to clustering-based CTs as
perate dry winter (Cw), temperate without dry season (Cf), DTWI13-1to DTWI13-13 and EUC13-1 to EUC13-13, re-
continental dry summer (Ds), continental dry winter (Dw),  spectively.
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F1G. 4. Comparison of three different classifications, TRDI DTW PAM13, TRDI EUC PAM13, and KG13, with thirteen climate types each. Panels
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Fig. 4 shows the maps and exemplars of CTs for the confirmed by examining the maps and CTs exemplars as
three classifications. The exemplars are color-coded to  shown in Fig. 4. Twelve of thirteen CTs can be matched
correspond to map legends but they don t show the vari- to each other as indicated by the map legends. The only
ation of D. The V-measure-based dissimilarity between unmatched CTs are the DTW13-12 which is an extremely
DTW13 and EUC13 is 0.33 and their overall similarity is dry and hot desert climate which has no equivalent in the
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EUC13 classification and the EUC13-8 which is an arid
climate at moderate temperatures and has no equivalent in
the DTW13 classification. In addition, the boundaries of
corresponding CTs are shifted relative to each other.

The V-measure-based dissimilarity between DTW13
and KG13 is 0.53, re ecting differences that can be ob-
served on the maps and by comparing their respective CTs.
We can closely match exemplars for the following six pairs
of CTs: DTWI13-4—Af, DTWI13-13—BW, DTWI3-
2—ET, DTWI13-2—DF, DTW13-5—Dw, and DTW13-
11— BS. Note, however, that despite close matches in ex-
emplars, some of these paired CTs have markedly differ-
ent spatial extents.

The remaining CTs cannot be closely matched. The ge-
ographical extent of the Cfis partially covered by two dis-
tinct DTW13 climates, the DTW13-6, which covers cen-
tral and eastern U.S., portions of Argentina and Uruguay,
and the southeastern coast of Australia, and the DTW13-
6, which covers Europe. The combined extent of Am, Aw,
and Cw coincides with the combined extent of DTW13-9,
DTW13-7, and DTW13-10, but there is no good one-to-
one matching between individual CTs. The Ds and the
DTW13-8 have somewhat similar exemplars but very dif-
ferent geographical ranges. Finally, Cs and EF have no
equivalents in the DTW13 classification, and the DTW13-
12 has no equivalent in the KG13 classification.

c¢. Climate inhomogeneities within CTs

Most applications of climate classifications implicitly
assume that climate within a single CT is relatively uni-
form. However, this assumption cannot be verified within
the scope of the KGC as it lacks a native notion of climate
similarity. In a modern implementation of KGC, which
has a form of a decision tree (Spinoni et al. 2015), the 11
derived climatic variables (Peel et al. 2007; Cannon 2012)
used to steer an LC through the tree could be thought of
as a vector description of the LC. Could the Euclidean dis-
tance between such vectors define a viable measure of cli-
mate similarity native to KGC? We have tested such pos-
sibility and came to a conclusion that it does not offer a
good measure of similarity. This is because the 11 vari-
ables were designed to be used for predicate statements
and not for assessment of similarity.

Our approach is built from the ground up on the no-
tion of climate similarity so we are in a position to inves-
tigate the homogeneity of various CTs. We apply DTW
similarity to investigate climate homogeneity within a CT
even if the CTs are delineated using the KGC. The homo-
geneity assessments are visualized in two different ways.
First, for each CT we compare the climate curve of its ex-
emplar with climate curves of a representative sample of
fifty LC randomly selected from this CT. Representative
sample means that LCs are randomly drawn from a distri-
bution representing the spread of dissimilarities between

LCs and the exemplar. This illustrates the range of differ-
ent climates that are grouped into a single CT. Second, we
map the geography of climate inhomogeneity for each CT.
Such a map shows the location of an exemplar; other loca-
tions belonging to a given CT are color-coded according
to their dissimilarity from the exemplar.

Fig. 5 shows the climate inhomogeneities of CTs in the
KGC. Panels show one or two CTs; two CTs are shown
when possible to decrease the size of the figure. Black
climate curves pertain to exemplars, other climate curves
pertain to the representative sample of LCs. Each CT is
labeled by its name and the color it was depicted by in
Fig. 4. The two numbers following the CT s name are the
maximum dissimilarity to the exemplar, and the 90th per-
centile of dissimilarities to the exemplar. This last number
is a good indicator of the spread of LCs within the CT.
The following CTs, Af, Am, BW, Dw, and Ds, are char-
acterized by a relatively small spread of LCs so they are
relatively homogeneous, as could be confirmed visually
by observing that the climate curves of LC are close to the
climate curve of the exemplar. On the other hand, CTs
such as ET, Cf, Cw, and BS are highly inhomogeneous.

Panels in Fig. 6 show maps of climate inhomogeneity
for each CT in the KGC. Exemplars locations are shown
by a black dot, locations progressively more dissimilar
to the exemplar are shown in progressively darker col-
ors. The most striking geographical inhomogeneities are
observed for ET, Cf, Cw, and BS. The KGC assigns Ti-
bet to the ET climate type, but clearly it has a climate
markedly different from that of the polar regions which
constitute the rest of the region identified as ET. The Cf
climate type appears to group two or maybe even three
distinct climates, one that covers central and eastern U.S.,
portions of Argentina and Uruguay, and the southeastern
coast of Australia, another which covers southeast China,
and another that covers norther Europe. The Cw climate
appears to lack any coherent form or multiple forms and
it is questionable whether it should be considered as a dis-
tinct climate type. Finally, the BS climate type appears to
be geographically too spread to be climatically homoge-
neous.

We can also quantify the quality of the entire KGC from
a clustering perspective by using the DB index which is
equal to DB=3.42.

We performed the same analysis for the DTW13 clas-
sification. The results are shown in Figs. 7 and 8 which
are the DTW13 equivalents of Figs. 5 and 6. Comparing
the results in Fig. 5 with the results in Fig. 7 we observe
that the DTW13 classification leads to a higher degree of
CT homogeneity than the KGC. The range of the 90th
percentile of dissimilarities to the exemplar is (0.4,0.75)
for the DTW13 classification, with a mean of 0.57 and
standard deviation of 0.09. For the KGC the range is
(0.57,1.09), with a mean of 0.75 and standard deviation
of 0.15. The fact that the DTW13 classification yields
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FIG. 5. Inhomogeneity of local climates within each of thirteen KG climate types. For each climate type the black curve corresponds to the
exemplar climate and colored curves correspond to the representative sample of 50 local climates within this climate type. Climate types are labeled
with the names and colors from Fig. 4. The values of the maximum dissimilarity to the exemplar, and the 90th percentile of dissimilarities to the

exemplar are also shown.

more homogeneous CTs is not a surprise as the goal of
a clustering algorithm, such as PAM, is to maximize the
homogeneity within individual CTs and the disparity be-
tween exemplars of different CTs. The DB=1.92 for the
DTW 13 further indicates that, an average, DTW13 CTs
are more uniform and more distinct from each other than
the CTs in the KGC.

Examining Fig. 7 we observe that all CTs in the DTW13
classification are relatively homogeneous. The largest in-
homogeneity value (0.75) is assigned to the DTW13-4,
even so the climate curves of the representative sample of
LCs appear to cluster closely around the exemplar. This is
because only the projections of climate curves on the (7,
R) plane are shown. In these two variables the DTW 13-4 is
more homogeneous than when all three variables (T, R, D)
are used. The reverse situation is observed for DTW13-11,
where a small value of inhomogeneity (0.53) is given, but
the figure shows a moderate spread of the representative
sample. This is because the DTW13-11 is very homoge-
neous in the values of D.

Panels in Fig. 8 show maps of climate inhomogeneity
for each CT in the DTW13 classification. Overall, the
DTW13 CTs are characterized by higher degree of geo-
graphical homogeneity than the KGC CTs. The DTW13-
I climate shows that the middle of Greenland has climate
significantly different from the rest of this CT. Recall that
the DTW13 did not yield an equivalent of EF climate in

the KGC. The region indicated as not fitting the rest of the
DTW13-1 coincide with the region labeled as EF by the
KGC. We conclude that the absence of an EF equivalent
in the DTW13 classification is due to our restricting the
number of CTs to 13. Within this limit the PAM algorithm
did not separate this region as an individual CT, but if one
more climate type would be allowed, this region would
become a new CT corresponding closely to the EF. The
DTW13-3 climate, which covers most of Europe but ex-
tends to Iceland and the southeastern cost of Greenland, is
relatively homogeneous with the exception of the coast of
Greenland, which has a climate markedly different from
the exemplar. This region would join the new CT in the
DTW14 classification as discussed above.

4. Conclusions

The KGC is the most widely used climate classifica-
tion system and has been so for over 100 years (Peel et al.
2007). This does not mean that research toward a more
complete understanding of the spatial distribution of cli-
mates across terrestrial land surface should cease. Due to
its exploratory character clustering offers a different point
of view on how the world s climates can be grouped into
CTs. Our aim was to critically examine various elements
of the clustering process to arrive at a protocol that results
in the most acceptable clustering-based climate classifica-
tion. What made this task difficult was the lack of “ground
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FIG. 6. Geographical depiction of inhomogeneities of local climates within each of thirteen KG climate types. For each climate a black dot
indicates the location of an exemplar and the white-to-black color gradient indicates locations having climates with small to large dissimilarity to
the exemplar. Climate types are labeled with the names and colors used in Fig. 4. The values of the maximum dissimilarity to the exemplar, and

the 90th percentile of dissimilarities to the exemplar are also shown.

truth” to measure against. Certainly, the KGC cannot be
considered ground truth because our goal is not to repro-
duce it but rather to arrive at a useful alternative for the
grouping of climates. After examining a large number of
possible clustering protocols (of which only 32 are docu-
mented in this paper) we arrived at the following conclu-
sions.

(1) A good mathematical representation of local climate
and an appropriate choice of dissimilarity function mat-
ters. Defining LC as a cyclic time series and using a dis-
similarity function that takes this definition into account

results in an automatic adjustment for the seasons, taking
into account not only the location of the LC (northern or
southern hemisphere) but also local physical conditions.
This results in a better quality of classification. The use
of DTW instead of the Euclidean distance had a smaller
impact than we expected. This is because the major ad-
vantage of DTW — its ability to adjust the dissimilarity of
two LCs for season-related time shifts has already been
accounted for by using time-shift invariant dissimilarity
functions. Even so, DTW still offers some small advan-
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tages which could be more pronounced if we used daily-
means instead of monthly-means data.

(2) Proper normalization of variables is important. Us-
ing a standard normalization (as in Zhang and Yan (2014))
or standardization (as in Zscheischler et al. (2012)) of data
effectively reduces the in uence of precipitation on sim-
ilarity between LCs and results in a classification based
predominantly on temperature. This can be observed in
Fig. 1 in the (Zhang and Yan 2014) paper where climate
types have markedly longitudinal character consistent with
overreliance on temperature. To avoid this problem the
skewed distribution of monthly-mean precipitation values
toward the large values needs to be taken into considera-
tion when normalizing the variables. Adding the monthly-
mean amplitude of temperature (D) as the third climatic
variable provides additional information to the clustering
process and changes the classification. Whether or not to
utilize D depends on one s concept of what constitutes cli-
mate. We think that D is pertinent to the perception of
climate, but whether it should carry the same weight as T
and P remains an open question.

(3) Finally, we have found that using the PAM algo-
rithm gives better results than using the HC algorithm.
This is in agreement with the earlier findings (Gersten-
garbe et al. 1999) that the K-means algorithm (which is
different from the PAM algorithm we used, but is based
on a similar principle) should be preferred over the HC
algorithm in the context of climate classification. How-

ever, when using PAM the resultant classification would
not form a hierarchy of climates. We have also tested a di-
visive hierarchical clustering algorithm DIANA (Kaufman
and Rousseeuw 2009). DIANA, like PAM, produces clus-
ters by dividing all LCs rather than agglomerating them
like in the HC. Thus, it may produce clusterings compa-
rable in quality to those yielded by PAM while also pre-
serving a hierarchical structure. We found that DIANA
yields good classification into 13 CTs when using DTW
dissimilarity function but not for other combinations of
number of clusters/dissimilarity function. Moreover, DI-
ANA is an order of magnitude more computationally ex-
pensive than PAM and thus not practical for clustering a
large grid of LCs. Clustering with PAM, HC, or DIANA
requires storing a distance matrix in a computer memory.
This is plausible given the 75 km resolution cells used in
our present calculations. Distance space-based clustering
of the higher resolution grid would require using an online
distance space-based clustering algorithm such as BUB-
BLE (Ganti et al. 1999), which dynamically clusters an
incoming stream of data points (LCs) without storing a
distance matrix.

As there is no strict agreed upon, specific, definition of
climate (we don t consider KG definitions to be definitive)
there are no criteria to determine which climate classifi-
cation is better than the other. Moreover, regardless of its
definition, climate changes continuously across the land
surface which means that boundaries between different
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climate types may easily shift when using different classi-
fication methods even if the definition of climate remains
the same. In short, we cannot expect to find one classifica-
tion that delineates CTs optimally from all possible points
of view. In this context our investigation resulted in estab-
lishing a framework for exploring different climatic parti-
tioning.

The KGC appeals to many because it is very familiar,
and the names and meanings of its individual CTs have
achieved a status of textbook knowledge. In addition,
the KGC scheme has the appealing quality of being pre-

sentable in the form of a decision tree (Spinoni et al. 2015).
On the other hand, as we demonstrated in this paper, the
clustering approach has its own advantages including a ca-
pability to delineate custom classifications and the ability
to assess the uniformity of climates within single CTs as
well as diversity between different CTs.

Discussing the relative merits of the DTW13 classifi-
cation (the one we singled out from the set of 32 inves-
tigated classifications) versus the KGC13 above what has
been discussed in section 3 is beyond the scope of this pa-
per. DTW13 uses a different definition of climate, and,
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within this definition, it formally outperforms the KGC13.
Whether DTW13 is better than KGC13 depends on ac-
ceptance or rejection of this definition. One application
where clustering-based classification should be used in-
stead of KGC is the visualization of climate change based
on predictions from global climate models. This is be-
cause there is no reason to believe that the effect of climate
change will be limited to shifting boundaries of present-
day CTs. Demonstrating differences between KGC-based
and classification-based mapping of future climates is be-
yond the scope of this paper but will be a topic of future
research.
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