Modelling light pollution over Poland using high resolution data

Henryka Netzel¹ dr Paweł Netzel²

¹Insitute of Astronomy University of Wrocław, Poland

²Space Informatics Lab University of Cincinnati, USA

Light Pollution: Theory, Modelling, and Measurements, 2015

Motivation Data

Light pollution as a problem

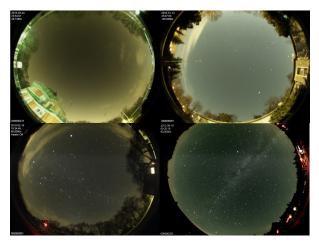
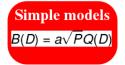
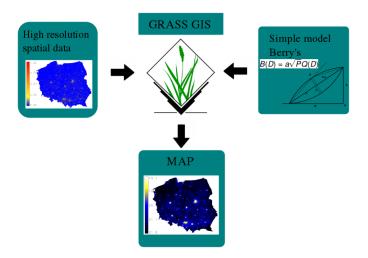



Figure: Pictures of night sky at different distances from Wroclaw taken with a camera SBIG AllSky 340C (*http://www.izera-darksky.eu/sky/allsky-test.html*)

Motivation Data

Existing models

Advanced models


$$\begin{split} &b = \pi N_m \sigma_R \exp(-cH) \int \int (dxdy/\pi R^2) \int_0^{\pi} du \\ &\times I_{ap} s^{-2} \left(\text{EF} \right)_{\text{XQ}} \left(\text{EF} \right)_{\text{QO}} \left(\text{DS} \right) \\ &\times \left\{ \exp(-ch) \Im(1 + \cos^2[\theta + \varphi]] / (16\pi) \right. \\ &+ \exp(-ah) 11.11 K f(\theta + \varphi) \right\} . \end{split}$$

Satellite data

Motivation Data

Our solution

GRASS GIS

- Geographic Resources Analysis Support System
- GNU public licence
- modular architecture
- data management
- image processing
- spatial modelling

Motivation Data

Berry's model

$$B(D) = a\sqrt{P}\left(\frac{U}{D^2+h^2} + \frac{V}{\sqrt{D^2+h^2}}\right)\exp(-k\sqrt{D^2+h^2})$$

Motivation Data

Berry's model

$$B(D) = a\sqrt{P}\left(\frac{U}{D^2+h^2} + \frac{V}{\sqrt{D^2+h^2}}\right)\exp(-k\sqrt{D^2+h^2})$$

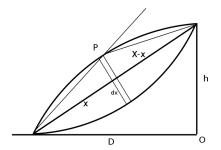


Figure: Physical situation described by Berry's model.

Motivation Data

Berry's model

$$B(D) = a\sqrt{P}\left(\frac{U}{D^2+h^2} + \frac{V}{\sqrt{D^2+h^2}}\right)\exp(-k\sqrt{D^2+h^2})$$

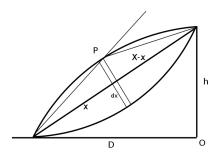


Figure: Physical situation described by Berry's model.

Figure: (Berry, 1976)

Introduction Motivation Results Data

The Global Human Settlement Layer (GHSL)

Percentage of built-up area coverage per spatial unit.

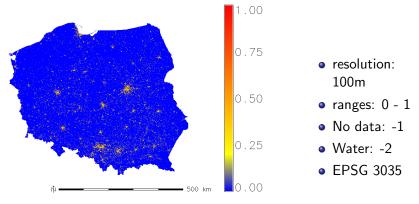
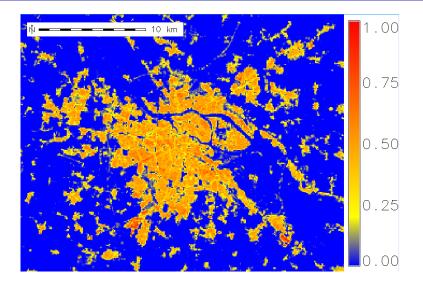
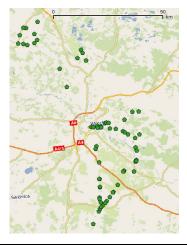



Figure: Copyright European Commission, European Settlement Map 2014

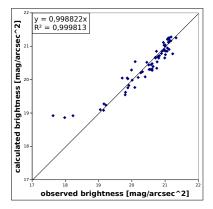
Motivation Data


Wrocław

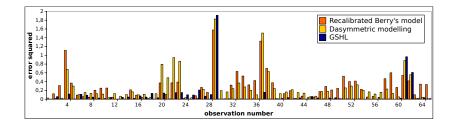
Motivation Data

Model recalibration

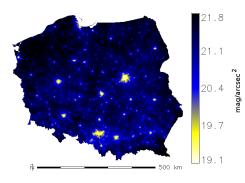
$$B(D) = a\sqrt{P}\left(\frac{U}{D^2+h^2} + \frac{V}{\sqrt{D^2+h^2}}\right)\exp(-k\sqrt{D^2+h^2})$$



Henryka Netzel, P. Netzel Modelling light pollution over Poland


Model, comparison with observations

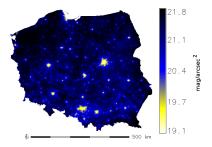
Mean squared error: 0.0788



Model, comparison with observations

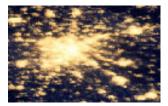
Out results Comparison with other results

Night sky brightness over Poland


resolution: 100 meters cells: 73 610 720 Hardware: Dell PowerEdge, 2x Xeon 3.1GHz, 256GB RAM, calculations were perfomed using 14 threads Time of calculation: 82min 32s Software: dedicated GRASS module written in C

Out results Comparison with other results

Poland, comparison with other results



Out results Comparison with other results

Wrocław, comparison with other results

Henryka Netzel, P. Netzel Modelling light pollution over Poland

Summary and conclusions

- We used very simple model and high resolution data and obtained detailed map of night sky brighntess in a reasonable time of calculations
- The model can be implemented in GRASS GIS system using standard commands (r.mapcalc, r.mfilter) or as dedicated module (r.skylight)
- GSHL can be used as input data to estimate spatial distribution of light pollution instead of population data

Future work:

- finish and publish new GRASS module
- Ishadowing effect (Dark Sky Park)
- O change of atmosferic extinction