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Forecasting the ozone concentrations with WRF and 

artificial neural network based system
1* 1 1Maciej Kryza , Paweł Netzel , Anetta Drzeniecka-Osiadacz ,

1 2Małgorzata Werner , Anthony J. Dore
1) Department of Climatology and Atmosphere Protection, University of Wroclaw, Poland

2) Centre for Ecology and Hydrology, Edinburgh, UK

1. Introduction
Ground level ozone (O ) has serious adverse impacts on human health 3

and ecosystems. Accurate tools that support human and ecosystem 

protection are necessary. The most often used are complex atmospheric 

chemistry models (Vieno et al. 2010), driven by off-line meteorology or 

integrated on-line to allow for two directional effects of atmospheric 

chemistry and meteorology. These tools need a significant amount of 

computational effort, but are able to provide information on spatial and 

temporal information on atmospheric ozone concentrations. Statistical 

methods, including regression models and artificial neural networks (ANN) 

are also often applied to provide information on spatial (Pfeiffer et al. 2009) 

and temporal variability of O . ANN were also found to be useful for O  3 3

forecasting, and were applied to e.g. metropolitan areas by local 

environmental or health agencies (Comrie 1997, Corani 2005, Ibarra-

Berastegi et al. 2008, Yi and Prybutok 1996). 
In this paper we present the preliminary results of the O  forecasting 3

system for the city of Wrocław, SW Poland. Two main tools are used to 

estimate the hourly O  for the next 3 and 24 hours – the Weather Research 3

and Forecasting (WRF) mesoscale meteorological model and an artificial 

neural network (ANN). WRF provides the meteorological variables for the 

next 3 and 24 hours, and the ANN is then applied to forecast the O  3

concentrations.

2.1 Ozone measurements and study periods
lOne hour O  measurements gathered at an urban background site in the 3

city of Wrocław, SW Poland
lMeasurements for the years 2005-2009 used, data completeness was 
96%
lAll measurements divided into a learning (60% of the 2005-2009 
observations) and test subsets (TP, 40%)
lThe period 14.04 – 10.05.2009 was treated separately as a case study and 
excluded from the dataset used for ANN setting. The episode was selected 

-3because of high concentrations of ground level ozone, exceeding 100 µg m  
during the day and the well represented diurnal cycle.

3. Results
WRF performance for the entire and ANN forecasting (FP) period is 

summarized in Table 1. There is an improvement in SLP model to 

measurement agreement after the year 2007. T2 is constantly 

underestimated, and WSPD overestimated, especially for the forecasting 

period.
ANN modelled O  for the period 10.04-15.05.2009 is presented in Fig. 2 for 3

both 3h and 24h forecasts. The ANN error statistics are presented in Table 2 

for test subset (TP) and forecasting period (FP), for 3h and 24h forecasts. 

The results are in close agreement with the O  measurements for the TP, for 3

both forecasting periods. For the FP, the ANN 3h results are in reasonably 

good agreement with the measurements There is a large negative bias for 

24h forecasts, but FAC2 is still above 50%.

4. Summary & conclusions
We used WRF meteorology as an input to a neural network to predict the 

hourly ground level O3 for the next 3 and 24 hours. Preliminary results show 

that the WRF model was able to provide reliable meteorological data, though 

with significant negative bias for air temperature estimates. ANN was 

reliable for short 3h forecasts, but significantly underestimated measured 

O3 for 24h forecasts. 
Further steps will include improvements of WRF meteorology –  

preliminary results show that the MB for T2 can be decreased by changing 

the model configuration. ANN will be rerun with the improved meteorology, 

and tested for a larger number of sites. Finally, we will use the WRF-ANN 

approach for spatial, short term O3 forecasting and compare the results with 

atmospheric transport model.

2.2. Meteorological data
The WRF model provided the meteorological data for ANN with 3h time 

step for the entire 2005-2009 period and 1h time step for the selected case 

study period. The model worked with three one way nested domains, with 

the innermost domain covering SW Poland with 2km x 2km spatial 

resolution. All the domains were composed of 35 vertical levels, with the top 

fix at 10hPa. Newtonian nudging was applied. The simulations were driven 

by the GFS FNL data, available every 6h. 

2.3. Neural network model
lfeed forward ANN network
l26 input layer neurons
l2 hidden layers (the first two with 10 and the second with 7 neurons)
lsigmoid transfer function

For the period 10.04 – 15.05.2009, the hourly meteorological data were 

used and the ANN provided O3 forecasts for the next 3h (FP 3h) and 24h (FP 

24h). For network learning, the following input variables were used: cosine of 

day number in a year and week, cosine of hour (cos(2**hour/24)), sea level 

pressure (SLP), air temperature (T2), dew point temperature and relative 

humidity at 2m, wind speed (WSPD), u and v wind components of wind 

speed at 10m and boundary layer height. Additionally, the differences 

between the current and 3h back values and 24h mean SLP, T2 and relative 

humidity were included in the input layer. The analysis was performed with 

the Fast Artificial Neural Network library and FANN Tool 1.1 interface. 

2.4. Evaluation of the WRF and ANN results
WRF results for the entire period were compared with meteorological 

measurements of air temperature, sea level pressure and wind speed 

gathered at Wrocław. The results were summarized for each year and for the 

ANN forecasting period. The ANN was evaluated by comparison with hourly 

O3 measurements separately for the TP, FP3h and FP24h. Common 

statistics were used to evaluate the WRF and ANN models, including mean 

bias (MB), mean absolute error (MAE) and the index of agreement (IOA). For 

ANN, the fraction of estimated values within a fraction two of the observed 

value (FAC2) was also provided.
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Table 1 WRF model performance for each year and forecasting period, Wrocław station

  
2005

 
2006

 
2007

 
2008

 
2009

 
FP

 

SLP
 

MB
 

1.44
 

1.58
 

1.45
 

0.63
 

0.55
 

-0.20
 

MAE
 

1.48
 

1.61
 

1.51
 

0.86
 

0.83
 

2.11
 

IOA  0.99  0.99  0.99 1.00 1.00 0.92 

T2  

MB  -2.13  -2.27  -1.96 -1.87 -1.98 -1.89 

MAE  2.98  3.24  3.02 2.71 3.12 2.76 

IOA  0.96  0.96  0.96 0.96 0.96 0.89 

WSPD
 
MB

 
0.15

 
0.09

 
0.12

 
0.08

 
0.00
 

0.65
 

MAE
 

1.01
 

1.03
 

1.15
 

1.12
 

1.09
 

1.79
 

IOA
 

0.86
 

0.85
 

0.87
 

0.87
 

0.84
 

0.67
 

 

Table 2 Error statistics of ANN O  forecasts (3 and 24 hours) for training and forecast period3

Fig. 1 Configuration of the WRF model domains and location of Wrocław (red dot)

Fig. 2 Measured and ANN modelled O  concentrations3
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MB
 

MAE
 

IOA
 

FAC2
 

(%)
 

TP
 

3h
 

-0.69
 

14.90
 

0.88
 

94
 

TP  24h  1.09  12.52 0.92 78 

FP
 

3h
 
8.36

 
26.56

 
0.73
 

79
 

FP 24h
 

-17.33
 

25.45
 

0.68
 

75
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