
plMapcalc 1.3

12 January 2021

Paweł Netzel

Table of Contents
Introduction..3
Installation..4

Windows..4
Linux..5

How to use..7
Command line syntax..7

input/output layer options...8
memory buffer options..8
macro options..8
other options..9

Macro and macro’s predefined variables...9
Location..10
Input and output..10
Memory buffer..10
Multiple input files scanning...10
Coordinates...10

Examples..12
Example 1: adding two (or more) layers...12
Example 2: calculation of NDVI...13
Example 3: a mask file creating...13
Example 4: statistics calculation..14
Example 5: reclassification of input layer...14
Example 6: area calculation and assigning..16
Example 7: space partitioning..17
Example 8: Thiessen (Dirichlet/Voronoi) tessellation...19
Example 9: image histogram matching and equalization..21
Example 10: implementation of Koeppen-Geiger climate classification......................................24

Introduction
plMapcalc is a standalone raster map calculator. It works under Windows (7, 8.1, 10) and Linux
(FC30). The application depends on GDAL (2.1.2). So, it is necessary to install GDAL before
plMapcalc installation. Windows version of plMapcalc is provided with an installation program.
Windows plMapcalc setup will install all needed dependencies. plMapcals uses argtable v.3 and
Tine C Compiler (TCC) v.0.9.3 libraries for argument parsing and macro on-the-fly compilation,
respectively.

plMapcalc’s user defines macros and scripts to perform calculations on raster layers. These macros
should be written using C language syntax. It is possible to define simple operations such as adding
two raster layers or NDVI calculation. User can also define complex scripts to perform more
advanced raster analysis (for example: calculation of Koeppen-Geiger climate classification).

plMapcalc is a fast and efficient software. It compiles macro to raw binary code and calls it for
every raster cell.

plMapcalc features:

 up to 256 input layers;

 up to 64 output layers;

 C language syntax;

 local auxiliary variables;

 global memory buffer;

 command line macros and files with scripts;

 BEGIN, CELL, and END scripts;

 multiple input data scanning;

 parallel tasks for I/O nad calculation operations (Linux only);

 mathematical functions.

plMapcalc limitations:

 input layers are treated as double floating point layers;

 pixel-to-pixel analysis only, no neighborhood operators;

 forcing the same projection, resolution and extent of all input layers;

 output files are GeoTIFFs only;

 GDAL dependency.

plMapcalc is a free and open source software. It is released under GNU GPL v.3 license.

A user can find binaries, sources, and manuals on the program’s web page:

http://plmapcalc.netzel.pl

Installation
To install plMapcalc, a user has to run setup program or install ready to use package. These binaries
can be downloaded form program’s web page listed in the section „Introduction”.

Windows
plMapcalc was tested under Windows 7 and Windows 10. The application is packaged in one setup
program. The setup will install plMapcalc. Additionally, a user can select two extra packages:
GDAL (usually this package is necessary) and Visual C runtime libraries.

The user can also select a destination folder, where the program will be installed.

After successful installation, the new position will be created in Windows start menu.

The main program to run plMapcalc is plMapcalc console. This shortcut will open new windows
console with plMapcalc environment ready to work.

In this CMD session the user can also call all GDAL utilities.

Linux
plMapcalc is available in a binary form as RPM package. The package is for Fedora Core 30 of
higher.

It contains plMapcalc binary, necessary libraries, and headers. The package can be installed using
dnf package manager. dnf will install all dependences, in particular – GDAL.

The command to install Mapcalc package:

dnf install plmapcalc-1.2-FC30.x86_64.rpm

Alternatively, it is possible to build plMapcalc from sources. If system contains GDAL and TCC,
the user can compile the application by invoking

make

and install it by

make install

plMapcalc will be installed in /usr/bin directory. It will look for tcc library, its components, and
headers in /usr/lib and /usr/lib/tcc.

How to use
plMapcalc runs macros to perform calculations on spatial data. It is a command line tool. So, a user
has to know both command line syntax to run mapcalc command and macro syntax to program
calculation procedure or expression.

Command line syntax
To run plMapcalc, a user has to call plmapcalc program. The program can describe itself. One can
run it without any option or with -h or --help option. The result is as follows:

$ plmapcalc

usage:

plmapcalc [-hqf] [--check] [--use-nan] [-t <n>] -i file.tif [-i file.tif]... [-o
file.tif[:type[:no_data:[compression]]]]... [-m <n>] [-r <file name>] [-s <file
name>] [-0] [-e ' code '] [-p <file>.mc] [--execute-begin=' code '] [--program-
begin=<file>.mc] [--execute-end=' code '] [--program-end=<file>.mc]

 -h, --help program usage
 -q, --quiet quiet mode
 --check display parameters and check their correctness
 -f, --force force to overwrite output file
 --use-nan force to treat NAN as a value (default: no-data)
 -t, --threads=<n> number of threads
 -i, --input=file.tif input layer(s) (GeoTIFF)
 -o, --output=file.tif[:type[:no_data:[compression]]]
 output layer(s): file name, data type (Byte, Int16,
 UInt16, Int32, UInt32, Float32, default Float64), n
 o_data value (default 0.0), compress (NONE, DEFLATE
 , DEFLATE2, DEFLATE3, LZW, LZW2, LZW3). (GeoTIFF)
 -m, --memory=<n> number of memory cells to store temporary data
 -r, --memory-read=<file name>
 file to read memory cells (TXT)
 -s, --memory-store=<file name>
 file to store memory cells (TXT)
 -0, --store-zeroes store all memory cells including zeros (defalt: no)
 -e, --execute=' code ' code to execute
 -p, --program=<file>.mc file with code to execute
 --execute-begin=' code '
 code to execute at the start
 --program-begin=<file>.mc
 file with code to execute at the start
 --execute-end=' code '
 code to execute at the end
 --program-end=<file>.mc
 file with code to execute at the end

 A user has to define -e or -p option!

 plMapcalc version: 1.2.488 (20200923.2158)

The minimum number of arguments is one input raster layer and macro to run. Macro can be
provided in-line or as script file with a macro definition.

There are four groups of arguments:

 input/output layer definition: -i, -o;

 memory buffer definition: -m, -r, -s, -0;

 macro definition: -e, -p, --check, --execute-begin, --execute-end;

 others: -q, -f, -h, -t.

input/output layer options

A program user has to enter file name of input file using -i option. It could be an absolute or relative
path to the file. The option -i can be used multiple times. That enables a user to define many input
raster layers.

The option -o is to define output layer. This option can be used multiple times as well. A user can
add up to three parameters after a file name/path. The first one defines data type of output layer, the
second – no-data value, and the last one compression algorithm. These parameters are optional. By
default, plMapcalc will store output data as double floating point raster layer, without no-data value,
and not compressed.

memory buffer options

One can define storage memory buffer in plMapcalc. This storage can be used for different tasks.
For example: to calculate global statistics of raster layer, to build frequency tables or histograms, to
reclassify input data etc.

A program user can define how many memory cells should be available. The option -m followed by
integer number is for that.

plMapcalc can read initial data to fill memory buffer from text file. A user has to point path to text
file with data to read with option -r. Each line in this file should contain memory cell index, blank
space, and memory cell value. An example of such file is below.

0 41623.279724212028668262
1 35513.439075932932610158
2 28021.639102664925303543
3 28041.327999936092965072
4 20369.025455332906858530

The input file can contain lines for all memory cell but this is not a critical condition. One can
define only selected cells in the text file. Rest of the memory cells will be initialized with zeroes.
plMapcalc will read the data from text file BEFORE start any calculations.

Memory buffer can be stored AFTER all calculations will be finished. If the user adds -w option,
plMapcalc will store non-zero memory cells into a text file. The internal structure of the file will be
identical to the format of the input text file. To save ALL memory cells, including zeros, a user has
to use -0 or –store-zeros option in program call.

macro options

An equation or macro or program (very complex macro) can be entered in two ways: as a command
line parameter or as a file containing the macro. A user can specify three macros:

BEGIN macro – this macro will be run before start calculations; it can be used to do initialization
operations;

CELL macro – this macro will be called for each raster cell;

END macro – this macro will be run after calculations of all cells in input layers; it can be used to
calculate statistics and/or do post-processing operations.

BEGIN and END macros are optional. To specify CELL macro in a command line, the option -e has
to be used. The macro should be enclosed in quotation marks. In Linux, it can be single quotation
characters. In Windows, it should be double quotation characters.

If the macro is large and complex, it can be stored in a text file. Formatting and text aligning in such
file is free and should satisfy rules of C language.

The option -p specifies the file name (with or without full/relative path). The macro will be read
into memory and processed in the same way as entered from command line.

There are two options available in long format only to specify BEGIN and END macros - --execute-
begin and –execute-end respectively.

plMapcalc has additional option --check to run „dry” calculation. If this option is present in
plMapcalc call, the program will only check syntax and try to compile the macros without any
calculations. The user can use this option during the macros build.

other options

Among others options, plMapcalc has a small set auxiliary option. The option -q forces the program
to run without any messages. The option -f tells the program to overwrite output raster layers. By
default, the program prevents raster layers overwriting. The option -h displays a short usage info.
The option -t is for specifying number of threads that can be used by plMapcal. plMapcalc can do
calculations in parallel with I/O operations. The –use-nan option enables plMapcalc to switch-on
using INF and NAN values in calculation. The default behavior is to treat these values as no-data.

Macro and macro’s predefined variables
A user should know C syntax to create macros for mapcalc application. But there is no need to learn
C language as a language or to learn how to compile and build executables in C.

The only knowledge necessary to work with plMapcalc is a few C expressions and C-style
punctuation. Such knowledge is enough to define most of the spatial raster operations. The macro
language of plMapcalc contains all mathematical functions available in C. If needs arise, a user can
create more complex macros and even programs implementing advanced algorithms.

When any doubt occurs, refer to ANSI C language documentation and tutorials.

plMapcalc works in the following way: reads macros, compiles macros, run BEGIN macro, walks
from cell to cell across region defined by input files and runs the CELL macro for each cell, finally
run END macro. Thanks to the binary format of the macros, calculations are very fast.

Input data, output results, and memory buffer are available in macros through set of variables.
These variables are named using capitalics. Input and output are not available in BEGIN and END
marcos.

Location

The CELL macro should know “where are we”. Answer to this question is couple of variables:
COL, ROW. These variables contain location (in terms: which column and which row) of current
calculations. Both variables are type of integer.

Input and output

There are four variables responsible for communication with raster layers: IN[], OUT[], INPNUM,
OUTNUM. IN[] are an array. That means a user can call an array element with index. All arrays in
C are indexed starting from zero. So, a user has to type-in IN[3] to obtain the value of the 4th
element of the array. IN array has INPNUM elements. The index can have a value from 0 to
INPNUM-1. The value of INPNUM equals to the number of -i options in the program command
line call.

OUT[] array and OUTNUM variable work in the same way. The only difference is set of layers.
OUT[] and OUTNUM are defined base on a number of output layers.

INPNUM and OUTNUM are integers. IN[] and OUT[] arrays are arrays of double type numbers.
Even if input layer contains integer numbers these numbers are converted to double.

Order of layers represented in IN[] and OUT[] arrays depends on order of layers occurrence in
command line program call.

Memory buffer

Memory buffer is represented by MEM[] array. The number of elements of this array is defined by -
m option. Macro knows the number of elements in MEM[] array thanks to MEMNUM integer
variable. MEM[] array is an array of double numbers. When plMapcalc is started with option -r and
no -m option is specified, the program calculates MEMNUM value using highest memory cell
number from the file pointed by -r.

Multiple input files scanning

It is possible to scan input data multiple times in plMapcalc. A user can call RESTART() function to
jump back to input the files beginning at any time. The ROW and COL variables will be set to zero
and calculation of the CELL macro will start again. To find out the current iteration number, a user
has to call ITERATION() function. This function returns integer value. Iterations are numbered
starting from one.

Coordinates

There is a variable providing information about coordinates in projected space. The variable is
GEOTRANS[]. This is an array of six double precission floating numbers and contains parameters
of affine transformation from column and row space to coordintaes space. X and Y coordinates can
be calculated in following way:

X_coordinate = GEOTRANS[0] + COL*GEOTRANS[1] + ROW*GEOTRANS[2]
Y_coordinate = GEOTRANS[3] + COL*GEOTRANS[4] + ROW*GEOTRANS[5]

If GEOTRANS[2] and GEOTRANS[4] are zero then input layers are oriented as a standard
geographical map – north is up. Moreover, GEOTRANS[1] and GEOTRANS[5] are cell’s width
and height respectively, and GEOTRANS[0] and GEOTRANS[3] are X, Y coordinates of top left
corner of the layer.

Examples
In following examples, you can find hints and different approaches to using plMapcalc. Examples
are ordered from simplest to the most complex. All examples are dedicated to run in Linux.
Windows system needs small modifications: different path element separator (in options -i,-o,-r,-s)
and double quotation marks (in option -e).

Example 1: adding two (or more) layers
Let’s assume that you have two layers: layer1.tif and layer2.tif. Both layers have the same
resolution and extent. The layers are in the same projection or both are defined in geographical
coordinates. The data stored in the layers are in floating point format. In the case of integer data,
plMapcalc will convert integers to doubles and do calculations using floating point format.

Basic call of plMapcalc should be:

plmapcalc -i layer1.tif -i layer2.tif -o sum.tif -e ‘OUT[0]=IN[0]+IN[1];’

A version of the call with long parameter’s format:

plmapcalc --input=layer1.tif
--input=layer2.tif
--output=sum.tif
--execute=’OUT[0]=IN[0]+IN[1];’

The call shown above contains two inputs: layer1.tif and layer2.tif and one output: sum.tif. The
output layer will be created with default options. That means: Float64 data format without no-data
value definition. The first input layer will be represented as IN[0] in the macro, the second as IN[1].
The array IN[] is an array of floating point numbers with double precision. Similarly, the output
layer sum.tif is represented as a first element of floating point array OUT[] (array elements are
indexed starting from zero);

If the user wants to get an output layer that contains integers and has no-data value, the plMapcalc
syntax should looks as follow:

plmapcalc -i layer1.tif -i layer2.tif
-o sum.tif:Int32:-9999 -e ‘OUT[0]=IN[0]+IN[1];’

Int32 means that output values will be converted to 4-byte integer. The conversion removes
fractional part of the value. The value -9999 will be used as no-data marker.

Sometimes, the default rounding function is not desired. The user can explicitly round output values
in the macro. For example:

plmapcalc -i layer1.tif -i layer2.tif
-o sum.tif:Int32:-9999 -e ‘OUT[0]=floor(IN[0]+IN[1]);’

The resultant layer will have the same projection, resolution, and extent as input layers.

The adding more then two layers is possible with using input file iteration. The command to run is
as follows:

plmapcalc -i layer1.tif -i layer2.tif -i ……… -i layerN.tif
-o sum.tif:Float32:-9999
-e ‘

int i;
for(i=0; i<INPNUM; i++)

OUT[0]+=IN[i];
 ’

Example 2: calculation of NDVI
The normalized difference vegetation index (NDVI) is a simple graphical indicator that can be used
to analyze remote sensing measurements, typically, but not necessarily, from a space platform, and
assess whether the target being observed contains live green vegetation or not.

In the case of Landsat 5 TM data, the NDVI is calculated as follows:

NDVI = (band 4 - band 3) / (band 4 + band 3)

This equation can be undefined in the case of zero in denominator. Because plMapcalc does
calculation on double precision floating point values, dividing by zero will return +Inf or -Inf value.
Sometimes, this behavior is acceptable. If not, the user should handle such case.

A macro to calculate NDVI can looks like following:

plmapcalc -i band4.tif
 -i band3.tif
 -o ndvi.tif:Float32:-9999
 -e ‘double x = IN[1] + IN[0];

 if(x==0.0) OUT[0]=-9999;
 else OUT[0]=(IN[0]-IN[1])/x;’

The macro contains local variable x. This variable is local in the context of spatial cell calculation.
The variable x is type of double and it is initialized with sum of both input layers: band3 and band4.
If variable x contains zero, ndvi will have no-data value (-9999).

Example 3: a mask file creating
The masking spatial data is used very often during spatial analysis. plMapcalc is a convenient tool
to create a mask using complex conditions. This example is presenting how to create a mask for
selecting raster cell belonging to a given country.

The user has raster layer covering all Europe. Each country has its own index. The user is going to
create a mask for country with index 38.

Command line call of mapcalc should be as follows

plmapcalc -i europe.tif -i my_country_mask.tif:Byte
 -e ‘OUT[0]=(IN[0]==38)?1:0;’

The expression: (IN[0]==38)?1:0 means: if cell of europe.tif contains value 38 then set value 1 else
set value 0. The resultant map will contain ones over country area and zeroes elsewhere.

Example 4: statistics calculation
Let’s use results of example 2 and example 3 to obtain average NDVI value of the selected country.

The user should use a memory buffer to calculate statistics over given area.

Command line call of mapcalc should be as follows

plmapcalc -i ndvi.tif -i my_country_mask.tif
-m 3 -e ‘if(IN[1]>0) {MEM[0]+=1;

 MEM[1]+=IN[0];}’
--execute-end ‘MEM[2]=MEM[1]/MEM[0];’
-s result.txt

plMapcalc will create result.txt file. The file will contain three lines. First line, corresponding to
MEM[0], will contain number of cells in the raster map. Second line, corresponding to MEM[1],
will contain total sum of all cell values. Third line, corresponding to MEM[2], will contain average
NDVI value. Of course, these statistics will be calculated for cells where mask value (file
my_country_mask.tif) is greater than zero. Note, that there is no output raster layer.

Example 5: reclassification of input layer
Consider following scenario: the user has landcover raster map (lc_classes.tif) and he is going to
reclassify the map to 4, more general classes: water, forest, agriculture, urban areas. plMapcalc
supports such operation in a very easy way.

First of all, the user has to prepare a text file containing contents of the memory buffer. Because the
input layer contains 16 different, distinct classes:

 11 – Open Water,
 12 – Perennial Ice/Snow,
 21 – Developed, Open Space,
 22 – Developed, Low Intensity,
 23 – Developed, Medium Intensity,
 24 – Developed, High Intensity,
 31 – Barren Land (Rock/Sand/Clay),
 41 – Deciduous Forest,
 42 – Evergreen Forest,
 43 – Mixed Forest,
 52 – Shrub/Scrubs,
 71 – Grassland/Herbaceous,
 81 – Pasture/Hay,
 82 – Cultivated Crops,
 90 – Woody Wetland,
 95 – Emergent Herbaceous Wetlands.

memory file has to contain definitions for all 16 classes. Output classes will be numbered in the
following way

 1 – water,

 2 – developed area,
 3 – barren land,
 4 – agriculture/green areas,
 5 – shrub,
 6 – forest.

The contents of memory file (mem_map.txt) is following

11 1
12 3
21 2
22 2
23 2
24 2
31 3
41 6
42 6
43 6
52 5
71 4
81 4
82 4
90 1
95 1

Memory cells other than listed in mem_map.txt file will be initialized with 0 value by definition.
The number of memory cells should be at least 96.

Command line call of plMapcalc should be as follows

plmapcalc -i lc_classes.tif
-m 100 -r mem_map.txt
-o lc_reclass.tif:Byte:0 -e ‘OUT[0]=MEM[(int)IN[0]];’

The expression (int)IN[0] means: take floating point number of the first array element and convert it
to integer. It is necessary to use this conversion because arrays can be indexed only with integers.
The expression results with integer index of MEM[] array.

Figure 1. The effect of reclassification: left image – the original land cover(16 classes), right image
– the land cover after reclassification (6 classes).

Example 6: area calculation and assigning
The frequently used procedure in raster analysis is a calculation area of patches. Such areas are later
assigning to the cells belonging to patches. The resultant layer contains values of patches areas. The
described process consists of two steps: calculating areas, and assigning values. It can be done in
two calls of plmapcalc. If user decides to use multiple scan of the data file the process can be done
in one plmapcalc call.

Assuming that patches are numbered by integers and similarly to calculation of statistics, area
calculation needs the vaery simple macro:

plmapcalc -i patches.tif
-m 2000
-e ‘MEM[(int)IN[0]]+=1.0;’
-s areas.txt

A user has to declare the number of memory cells that is enough to store areas of all patches.

The -m option is followed by maximum patch ID incremented by one.

The next step is to do a reclassification to assign areas’ value to each cell. This step is similar to
layer reclassification from example 5 but this time a user has ready to use reclassification file. The
macro is as follows:

plmapcalc -i patches.tif
-r areas.txt
-m 2000
-o areas.tif:Float64:-9999:LZW
-e ‘OUT[0]=MEM[(int)IN[0]];’

PlMapcalc uses patches.tif file as input once again. During the run, an output file (areas.tif) is
created. Cells of this raster file contain areas of patches. The areas are expressed in cells numbers. If
it is necessary, a user can scale areas by multiplying cells number by area of a cell.

The result of area calculation for forest districts in Poland is illustrated on figure 2.

Figure 2. The result of area calculation. The area size is marked with color (white – smallest forest
districts, dark red – biggest forest districts).

As it was mentioned at the beginning, it is possible to combine both steps in one run. It can be done
with following macro:

plmapcalc -i patches.tif
-m 2000
-o areas.tif:Float64:-9999:LZW
-e ‘if(ITERATION()==1) MEM[(int)IN[0]]+=1.0;
 else OUT[0]=MEM[(int)IN[0]];’
--execute-end=‘if(iteration()==1) RESTART();’

The results will be exactly the same.

Example 7: space partitioning
PlMapcalc is convenient tool for creating patches with given topology. To create squares that
building a rook topology following command is necessary:

plmapcalc -i reference.tif
-o sq_patches.tif:Uint:0:DEFLATE2
-e ‘

int size=100;
OUT[0] = 1 + COL/size + (ROW/size)*(1 + COLS/size);’

The size parameter is for defining size of squares. The reference.tif file provides information about
geometry i.e. bounding box, resolution, and the number of rows and columns. The resultant layer
will contain patches with the shape of squares. Cells belonging to each patch will contain ID of this
patch. Each patch will have unique and greater then zero ID. Value zero is used as no-data marker.

The results of above command run is presented on Figure 3.

Figure 3. The effect of creating patches with rook topology. Patches are filled with random colors.
The labels present IDs of patches.

The rook topology is not only topology that can be created by plMapcalc. The other useful topology
is hexagonal grid. To create hexagonal patches a more complicated macro is necessary. The output
of the program is similar to former results but this time the patches will have hexagonal shape.

The macro for calculating hexagonal patches (stored in file hexagon.mc):

int sizeX = 100;
int size2 = sizeX/2;
int sizeY = floor(sqrt(3.0)*sizeX/2.0);

COL++;
ROW++;

int R = ROW/sizeY;
int C = COL/sizeX;

int Cols = COLS/sizeX + 1;

int R_center = R*sizeY + size2;
int C_center = C*sizeX;

int c,r;
double d,dx,dy, min_d = 2*sizeX*sizeX;

for(r=-1; r<2; r++) {
 int Cc = C_center + ((R+r) % 2)*size2;
 int Rc = R_center + r*sizeY;
 if(Cc<0 || Cc>=COLS || Rc<0 || Rc>=ROWS) continue;
 dy = Rc - ROW;
 for(c=-1; c<2; c++) {
 dx = Cc + c*sizeX - COL;

 d = dx*dx + dy*dy;

 if(d<min_d) {
 min_d = d;
 OUT[0] = 1 + C+c + (R+r)*Cols;
 }
 }
}

The variable sizeX contains size of hexagon’s side. The command to run this macro is following:

plmapcalc -i reference.tif
 -o hexagons.tif:UInt32:0:DEFLATE2

-p hexagon.mc

The results of hexagon.mc macro are shown on Figure 4.

Figure 4. The effect of creating patches with hexagonal topology. Patches are filled with random
colors. The labels present IDs of patches.

Example 8: Thiessen (Dirichlet/Voronoi) tessellation
Thiessen tessellation can be created with plMapcalc. To do that it is needed to create memory file
containing points coordinates. Let’s create following file and save it as xy_coordinates.txt:

0 4749361.26105342
1 3114579.6505474
2 4759413.25837782
3 3123209.19542023
4 4764059.93638626
5 3098648.18308986
6 4751068.2039953
7 3097036.07031142

8 4778568.95139223
9 3111924.40597114
10 4789948.57100476
11 3096182.59884048
12 4781129.36580505
13 3066121.43703073
14 4793077.9663982
15 3073518.18977887
16 4776862.00845036
17 3088596.18576547
18 4790991.70280257
19 3121976.40329554

Even memory cells contain X coordinate of sampled points, and odd memory cells contain Y
coordinate. Then, one can run plMapcalc with BEGIN and CELL macros:

plmapcalc -i reference.tif
-o thiessen.tif:UInt32:0:DEFLATE2
-r xy_coordinates.txt
--execute-begin=’

int i, r, c;
double x, y;

for(i=0; i<MEMNUM; i=i+2) {
 x = MEM[i];
 y = MEM[i+1];
 c = (x - GEOTRANS[0])/GEOTRANS[1];
 r = (y - GEOTRANS[3])/GEOTRANS[5];
 MEM[i] = c;
 MEM[i+1] = r;

}
‘
--execute=’

double dx, dy, d, min_d = 2*ROWS*COLS;
int i;

OUT[0] = 0.0;

for(i=0; i<MEMNUM; i=i+2) {
 dy = MEM[i+1] - ROW;
 dx = MEM[i] - COL;
 d = dx*dx + dy*dy;

 if(d<min_d) {
 min_d = d;
 OUT[0]=1+i/2;
 }

}
‘

The BEGIN macro takes (x, y) coordinates as input and converts them to (col, row) coordinates.

The CELL macro finds a closest point and assigns its order number to the current point. The
resultant output layer is shown on Figure 5.

Figure 5. The effect of Thiessen tessellation. Thiessen polygons are filled with random colors. The
labels present IDs of the polygons. The seeds are marked by gray points.

Example 9: image histogram matching and equalization
This is an implementation of the algorithm to equalize greyscale image histogram. It is a special
case of histograms matching. The main aim of histogram matching is to make two histograms
similar each other. In histogram equalization, reference histogram is linear.

Figure 6 shows the original image (on the left) and the image after applying histogram equalization
(on the right). The result is made by plMapcalc script.

Figure 6. The effect of histogram equalization. The left image histogram is equalized to stretch the
contrast and make details visible.

This example shows how to use two input data scans. During first scan, lookup table is bulit. In the
second scan, the lookup table is used to reclassify input image. ITERATION function allows to
control processing flow. RESTART function is used to jump at the beginning of the data.

This plMapcalc call will do histogram equalization:

plmapcalc --input=greyscale_input.tif
--memory=1000

 --output=grey_eq_output.tif:Int32
 --execute-begin='

int i;
 // creating reference CDF
 for(i=0; i<256; i++)
 MEM[i] = i/256.0;'
 --execute='

if(ITERATION()==1)
 // building image histogram
 MEM[(int)IN[0]+500]+=1;
 else
 // reclassyfication of the input
 OUT[0]=MEM[(int)IN[0]+500];'
 --execute-end='

if(ITERATION()==1) {
 int i, j, min_j;
 double v, a, min_v;

 // calculating image CDF
 for(i=1+500; i<256+500; i++)
 MEM[i]+=MEM[i-1];
 v=MEM[255+500];
 for(i=500; i<256+500; i++)
 MEM[i]/=v;

 // reclassification rules
 for(i=500; i<256+500; i++) {
 v=MEM[i];
 min_j=0;
 min_v=fabs(MEM[0]-v);
 for(j=1; j<256; j++) {
 a=fabs(MEM[j]-v);
 if(a<min_v) {
 min_j=j;
 min_v=a;
 }
 }
 MEM[i]=min_j;
 }
 RESTART();
 }'

Histogram matching is very similar to histogram equalization. The only difference is the reference
histogram is not artificial (linear) but it is built from reference image. The results of histogram
matching are presented on figure 7.

This plMapcalc call will do histogram matching:

plmapcalc --input=greyscale_input.tif
--input=greyscale_reference.tif
--memory=1000

 --output=grey_eq_output.tif:Int32
 --execute-begin='

int i;

 // creating reference CDF
 for(i=0; i<256; i++)
 MEM[i] = i/256.0;'
 --execute='

if(ITERATION()==1) {
 // building image histograms
 MEM[(int)IN[0]+500]+=1;
 MEM[(int)IN[1]]+=1;
 } else
 // reclassyfication of the input
 OUT[0]=MEM[(int)IN[0]+500];'
 --execute-end='

if(ITERATION()==1) {
 int i, j, min_j;
 double v, v_in, v_ref, a, min_v;

 // calculating image CDFs
 for(i=1; i<256; i++) {
 MEM[i+500]+=MEM[i-1+500];
 MEM[i]+=MEM[i-1];

}
 v_in=MEM[255+500];

v_ref=MEM[255];
 for(i=0; i<256; i++) {
 MEM[i+500]/=v_in;
 MEM[i]/=v_ref;

}

 // reclassification rules
 for(i=500; i<256+500; i++) {
 v=MEM[i];
 min_j=0;
 min_v=fabs(MEM[0]-v);
 for(j=1; j<256; j++) {
 a=fabs(MEM[j]-v);
 if(a<min_v) {
 min_j=j;
 min_v=a;
 }
 }
 MEM[i]=min_j;
 }
 RESTART();
 }'

Figure 7. The effect of histogram matching. The reference image is on the left. The middle image
histogram is matched to obtain an image that can be processed in further analysis together with the
reference.

Example 10: implementation of Koeppen-Geiger climate
classification
Koeppen-Geiger climate classification needs information about temperature and precipitation. This
information should be collected for each month of the year. Such data can be downloaded from
WoldClim project (http://www.worldclim.org).

Let’s assume that the user has downloaded all necessary layers and stored them as:

 temperature layers: t01.tif, t02.tif, …., t12.tif

 precipitation layers: p01.tif, p02.tif, …., p12.tif

Each temperature layer contains information about multiyear average of monthly temperature. Each
precipitation layer contains information about multiyear average of monthly sum of precipitation.

Spinoni provided convenient algorithm to do KG classification. In the example, classification to 13
climate classes is presented (Spinoni et al. (2015): Towards identifying areas at climatological risk
of desertification using the Köppen–Geiger classification and FAO aridity index, Int. J. Climatol.
35: 2210–2222). Rules to classify climate data are too complex to insert as a command line
parameter. For such a case, plMapcalc has an ability to read macro from a file.

Contents of the macro file (KG_classification_13.mc) is shown below:

// KG classes
 #define EF 1
 #define ET 2
 #define BW 3
 #define BS 4
 #define Am 5
 #define Aw 6
 #define Af 7
 #define CS 8
 #define CW 9
 #define CF 10
 #define DS 11
 #define DW 12

http://www.worldclim.org/

 #define DF 13

// Temperature 10*C deg.

 double Tcold = 10000.0;
 double Thot = -10000.0;
 double Tmon10 = 0.0;
 double Ta;
 double MAT = 0.0;
 double MATw = 0.0;
 double MATs = 0.0;
 int i;

 for(i=1; i<=12; i++) {
 Ta = IN[i-1];
 if(Ta<Tcold) Tcold=Ta;
 if(Ta>Thot) Thot=Ta;
 if(Ta>100.0) Tmon10+=1.0;
 MAT+=Ta;
 if((i>3) && (i<10)) {
 // summer
 MATs+=Ta;
 } else {
 // winter
 MATw+=Ta;
 }
 }
 Tcold *= 0.1;
 Thot *= 0.1;
 Tmon10 *= 0.1;
 MAT /= 120.0;

 // Precipitation mm/month

 double MAP = 0.0;
 double MAPw = 0.0;
 double MAPs = 0.0;
 double Pr;
 double Pdry = 10000.0;
 double Pwdry = 10000.0;
 double Psdry = 10000.0;
 double Pwwet = 0.0;
 double Pswet = 0.0;

 for(i=1; i<=12; i++) {
 Pr=IN[i-1+12];
 if(Pdry>Pr) Pdry = Pr;
 MAP += Pr;
 if((i>3) && (i<10)) {
 // summer
 if(Psdry>Pr) Psdry = Pr;
 if(Pswet<Pr) Pswet = Pr;
 MAPs+=Pr;
 } else {
 // winter
 if(Pwdry>Pr) Pwdry=Pr;
 if(Pwwet<Pr) Pwwet=Pr;
 MAPw+=Pr;
 }
 }

 double p;
 double Pthre;

 // Summer/winter
 if(MATw>MATs) {
 p=MAPw; MAPw=MAPs; MAPs=p;
 p=Pwdry; Pwdry=Psdry; Psdry=p;
 p=Pwwet; Pwwet=Pswet; Pswet=p;
 }

 // P threshold
 if(MAPw > 0.7*MAP)
 Pthre= 20.0*MAT;
 else if(MAPs>0.7*MAP)
 Pthre = 20.0*MAT+280.0;
 else
 Pthre = 20.0*MAT+140.0;

 int alpha, beta, delta;

 alpha=((Psdry<30.0) && (Psdry<Pwwet/3.0) && (MAPs<MAPw));
 beta=((Pwdry<Pswet/10.0) && (MAPw<MAPs));
 delta=!(alpha && beta);

 int KG=0;

 if(Thot<10.0) {
 if(Thot>0.0)
 KG=ET;
 else
 KG=EF;
 } else {
 if(Pthre>=MAP) {
 if(MAP<Pthre/2.0)
 KG=BW;
 else
 KG=BS;
 } else {
 if(Tcold>=18.0) {
 if(Pdry<60.0) {
 if(Pdry>=100.0-MAP/25.0)
 KG=Am;
 else
 KG=Aw;
 } else
 KG=Af;
 } else if(Tcold<-3.0) {
 if(alpha)
 KG=DS;
 else if(beta)
 KG=DW;
 else if(delta)
 KG=DF;
 } else {
 if(alpha)
 KG=CS;
 else if(beta)
 KG=CW;
 else if(delta)
 KG=CF;
 }
 }
 }

 OUT[0] = (double)KG;

The macro contains many different C syntax elements such as

 constants definitions,

 local variables definition and initialization,

 logical, integer, and double variables,

 conditional expressions,

 type casting and conversion,

 comments.

Command line call of mapcalc should be following:

plmapcalc -i t01.tif -i t02.tif -i t03.tif -i t04.tif -i t05.tif
-i t06.tif -i t07.tif -i t08.tif -i t09.tif -i t10.tif
-i t11.tif -i t12.tif
-i p01.tif -i p02.tif -i p03.tif -i p04.tif -i p05.tif
-i p06.tif -i p07.tif -i p08.tif -i p09.tif -i p10.tif
-i p11.tif -i p12.tif
-o kg13.tif:Byte:0:LZW
-p macros/KG_classification_13.mc

plMapcalc will read data from 24 input files and create one output file. The resultant file will be
type of Byte where no-data cells will contain value zero. The value zero will be defined as no-data
value. This file will be compressed with LZW algorithm. plMapcalc will read macro from file
KG_classification_13.mc placed in subdirectory macros. The file suffix mc is optional. The order of
input files is significant.

The results of above script are presented on Figure 8 (Netzel P.,. Stepinski T.F, 2016: On using a
clustering approach for global climate classification. Journal of Climate. Vol. 29, no 9, pp.3387–
3401)

Figure 8. The Koeppen-Geiger climate classification obtained by plMapcalc script.

	Introduction
	Installation
	Windows
	Linux

	How to use
	Command line syntax
	input/output layer options
	memory buffer options
	macro options
	other options

	Macro and macro’s predefined variables
	Location
	Input and output
	Memory buffer
	Multiple input files scanning
	Coordinates

	Examples
	Example 1: adding two (or more) layers
	Example 2: calculation of NDVI
	Example 3: a mask file creating
	Example 4: statistics calculation
	Example 5: reclassification of input layer
	Example 6: area calculation and assigning
	Example 7: space partitioning
	Example 8: Thiessen (Dirichlet/Voronoi) tessellation
	Example 9: image histogram matching and equalization
	Example 10: implementation of Koeppen-Geiger climate classification

